Stephen M Jane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2895445/publications.pdf

Version: 2024-02-01

30	1,120	15	29
papers	citations	h-index	g-index
31	31	31	1530 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Delineating the roles of Grhl2 in craniofacial development through tissueâ€specific conditional deletion and epistasis approaches in mouse. Developmental Dynamics, 2021, 250, 1191-1209.	0.8	2
2	Grainyheadâ€like transcription factors: guardians of the skin barrier. Veterinary Dermatology, 2021, 32, 553.	0.4	4
3	The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica, 2021, 106, 1519-1534.	1.7	17
4	Interrogating the Grainyhead-like 2 (Grhl2) genomic locus identifies an enhancer element that regulates palatogenesis in mouse. Developmental Biology, 2020, 459, 194-203.	0.9	7
5	Inactivation of <i>Zeb1</i> in GRHL2-deficient mouse embryos rescues mid-gestation viability and secondary palate closure. DMM Disease Models and Mechanisms, 2020, 13 , .	1.2	16
6	Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death and Disease, 2018, 9, 1072.	2.7	21
7	Lung morphogenesis is orchestrated through Grainyhead-like 2 (Grhl2) transcriptional programs. Developmental Biology, 2018, 443, 1-9.	0.9	21
8	Restricted cell cycle is essential for clonal evolution and therapeutic resistance of pre-leukemic stem cells. Nature Communications, 2018, 9, 3535.	5.8	13
9	Characterization of Tfrc-mutant mice with microcytic phenotypes. Blood Advances, 2018, 2, 1914-1922.	2.5	5
10	Bone marrow transplantation corrects haemolytic anaemia in novel ENU mutagenesis mouse model of TPI deficiency. DMM Disease Models and Mechanisms, $2018,11,1$	1.2	13
11	Loss of Dynamin 2 <scp>GTP</scp> ase function results in microcytic anaemia. British Journal of Haematology, 2017, 178, 616-628.	1.2	7
12	<i>Grainyheadâ€like 3</i> (<i>Grhl3</i>) deficiency in brain leads to altered locomotor activity and decreased anxietyâ€like behaviors in aged mice. Developmental Neurobiology, 2017, 77, 775-788.	1.5	15
13	Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension. Scientific Reports, 2017, 7, 17607.	1.6	25
14	Â-globin expression is regulated by SUV4-20h1. Haematologica, 2016, 101, e168-e172.	1.7	3
15	Two Ancient Gene Families Are Critical for Maintenance of the Mammalian Skin Barrier in Postnatal Life. Journal of Investigative Dermatology, 2016, 136, 1438-1448.	0.3	26
16	Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development. BMC Developmental Biology, 2016, 16, 37.	2.1	17
17	Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model. Blood, 2015, 126, 2863-2870.	0.6	21
18	Consequences of the loss of the Grainyhead-like 1 gene for renal gene expression, regulation of blood pressure and heart rate in a mouse model. Acta Biochimica Polonica, 2015, 62, 287-296.	0.3	6

#	Article	IF	CITATIONS
19	Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma. Journal of the National Cancer Institute, 2015, 107, .	3.0	43
20	Loss of Grainy Head-Like 1 Is Associated with Disruption of the Epidermal Barrier and Squamous Cell Carcinoma of the Skin. PLoS ONE, 2014, 9, e89247.	1.1	52
21	Human fetal globin gene expression is regulated by LYAR. Nucleic Acids Research, 2014, 42, 9740-9752.	6.5	32
22	Grainyhead-like 3 regulation of endothelin-1 in the pharyngeal endoderm is critical for growth and development of the craniofacial skeleton. Mechanisms of Development, 2014, 133, 77-90.	1.7	37
23	ENU mutagenesis identifies the first mouse mutants reproducing human \hat{l}^2 -thalassemia at the genomic level. Blood Cells, Molecules, and Diseases, 2013, 50, 86-92.	0.6	15
24	Golgi Feels Its Own Wound. Advances in Wound Care, 2013, 2, 87-92.	2.6	14
25	ENU Mutagenesis in the Mouse for Identification of Genes Regulating Erythropoiesis: a Mouse Mutant with An Activating Mutation of the KCl Cotransporter, KCC1 Causing Dehydrated Red Cells. Blood, 2011, 118, 684-684.	0.6	0
26	Regional neural tube closure defined by the Grainy head-like transcription factors. Developmental Biology, 2010, 345, 237-245.	0.9	114
27	Novel roles for erythroid Ankyrin-1 revealed through an ENU-induced null mouse mutant. Blood, 2009, 113, 3352-3362.	0.6	44
28	Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development. Gene Expression Patterns, 2006, 6, 964-970.	0.3	111
29	A Homolog of Drosophila grainy head Is Essential for Epidermal Integrity in Mice. Science, 2005, 308, 411-413.	6.0	280
30	A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead. Mechanisms of Development, 2002, 114, 37-50.	1.7	139