
James A D Connolly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/28952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 2005, 236, 524-541.	4.4	1,728
2	The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	776
3	Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Numerische Mathematik, 1990, 290, 666-718.	1.4	763
4	Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 2004, 223, 17-34.	4.4	641
5	Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 2001, 411, 293-296.	27.8	405
6	Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth and Planetary Science Letters, 2001, 189, 19-29.	4.4	390
7	An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. Journal of Metamorphic Geology, 2002, 20, 697-708.	3.4	309
8	A thermodynamic model for titanium and ferric iron solution in biotite. Journal of Metamorphic Geology, 2009, 27, 153-165.	3.4	296
9	Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 1995, 100, 15565-15579.	3.3	277
10	C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 1993, 11, 379-388.	3.4	267
11	Modeling open system metamorphic decarbonation of subducting slabs. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	230
12	Why is terrestrial subduction one-sided?. Geology, 2008, 36, 43.	4.4	221
13	Compaction-driven fluid flow in viscoelastic rock. Geodinamica Acta, 1998, 11, 55-84.	2.2	214
14	Integrated geophysicalâ€petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	200
15	Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research, 1997, 102, 18149-18173.	3.3	199
16	Can we constrain the interior structure of rocky exoplanets from mass and radius measurements?. Astronomy and Astrophysics, 2015, 577, A83.	5.1	199
17	How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica Et Cosmochimica Acta, 2010, 74, 7179-7195.	3.9	194
18	Seismic implications of mantle wedge plumes. Physics of the Earth and Planetary Interiors, 2006, 156, 59-74	1.9	190

#	Article	IF	CITATIONS
19	Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids?. Geology, 2002, 30, 1035.	4.4	174
20	Titanium in phengite: a geobarometer for high temperature eclogites. Contributions To Mineralogy and Petrology, 2010, 159, 1-24.	3.1	172
21	An algorithm and computer program for calculating composition phase diagrams. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1987, 11, 1-55.	1.6	163
22	Characterization of polymetamorphism in the Austroalpine basement east of the Tauern Window using garnet isopleth thermobarometry. Journal of Metamorphic Geology, 2006, 24, 451-475.	3.4	153
23	Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 2013, 178, 186-196.	1.4	153
24	Numerical modelling of crustal growth in intraoceanic volcanic arcs. Physics of the Earth and Planetary Interiors, 2008, 171, 336-356.	1.9	146
25	Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 1998, 26, 375.	4.4	143
26	Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. Geophysical Monograph Series, 2004, , 119-136.	0.1	137
27	Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth. Earth and Planetary Science Letters, 2002, 204, 61-74.	4.4	133
28	Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics, 2000, 324, 137-168.	2.2	129
29	3â€D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: <i>a priori</i> petrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 2013, 118, 2586-2617.	3.4	121
30	Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophysical Journal International, 2007, 168, 243-258.	2.4	119
31	Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling. Physics of the Earth and Planetary Interiors, 2007, 163, 209-232.	1.9	117
32	The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics. Earth and Planetary Science Letters, 2010, 296, 403-412.	4.4	117
33	The Mechanics of Metamorphic Fluid Expulsion. Elements, 2010, 6, 165-172.	0.5	114
34	Fluid and enthalpy production during regional metamorphism. Contributions To Mineralogy and Petrology, 1989, 102, 347-366.	3.1	113
35	Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation. Journal of Geophysical Research, 2007, 112, .	3.3	112
36	Threeâ€dimensional dynamics of hydrous thermalâ€chemical plumes in oceanic subduction zones. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	112

#	Article	IF	CITATIONS
37	Element Partitioning: The Role of Melt Structure and Composition. Science, 2006, 312, 1646-1650.	12.6	108
38	LitMod3D: An interactive 3â€Ð software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	107
39	Role of chemical processes on shear zone formation: an example from the Grimsel metagranodiorite (Aar massif, Central Alps). Journal of Metamorphic Geology, 2012, 30, 703-722.	3.4	102
40	Phase diagram methods for graphitic rocks and application to the system Câ^'Oâ^'Hâ^'FeOâ^'TiO2â^'SiO2. Contributions To Mineralogy and Petrology, 1995, 119, 94-116.	3.1	100
41	Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus, 2011, 215, 346-357.	2.5	99
42	Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contributions To Mineralogy and Petrology, 2005, 149, 627-646.	3.1	97
43	Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature, 2009, 462, 209-212.	27.8	97
44	A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research E: Planets, 2018, 123, 575-611.	3.6	97
45	Effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth and Planetary Science Letters, 2005, 233, 213-228.	4.4	93
46	Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. Journal of Geophysical Research, 2006, 111, .	3.3	93
47	Retrogressed eclogite (20kbar, 1020°C) from the Neoproterozoic Palghat–Cauvery suture zone, southern India. Precambrian Research, 2009, 171, 23-36.	2.7	93
48	Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 2016, 539, 420-424.	27.8	93
49	A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones. Tectonophysics, 2003, 370, 241-251.	2.2	91
50	Growth and mixing dynamics of mantle wedge plumes. Geology, 2007, 35, 587.	4.4	91
51	Dynamics of double subduction: Numerical modeling. Physics of the Earth and Planetary Interiors, 2008, 171, 280-295.	1.9	90
52	Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. Journal of Geophysical Research E: Planets, 2014, 119, 2197-2221.	3.6	89
53	Petrogenetic grids for metacarbonate rocks: pressure-temperature phase-diagram projection for mixed-volatile systems. Contributions To Mineralogy and Petrology, 1991, 108, 93-105.	3.1	87
54	Fluid flow in compressive tectonic settings: Implications for midcrustal seismic reflectors and downward fluid migration. Journal of Geophysical Research, 2004, 109, .	3.3	86

#	Article	IF	CITATIONS
55	Grainâ€scale pressure variations and chemical equilibrium in highâ€grade metamorphic rocks. Journal of Metamorphic Geology, 2014, 32, 195-207.	3.4	80
56	Reaction-induced microcracking: An experimental investigation of a mechanism for enhancing anatectic melt extraction. Geology, 1997, 25, 591.	4.4	79
57	3â€D multiâ€observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. Journal of Geophysical Research: Solid Earth, 2013, 118, 1650-1676.	3.4	78
58	Constraining the composition and thermal state of Mars from inversion of geophysical data. Journal of Geophysical Research, 2008, 113, .	3.3	76
59	Incorporating selfâ€consistently calculated mineral physics into thermochemical mantle convection simulations in a 3â€D spherical shell and its influence on seismic anomalies in Earth's mantle. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	76
60	Subducting serpentinites release reduced, not oxidized, aqueous fluids. Scientific Reports, 2019, 9, 19573.	3.3	73
61	Hydrous Phase Relations and Trace Element Partitioning Behaviour in Calcareous Sediments at Subduction-Zone Conditions. Journal of Petrology, 2015, 56, 953-980.	2.8	70
62	Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth and Planetary Science Letters, 2018, 501, 90-102.	4.4	69
63	The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth and Planetary Science Letters, 2015, 430, 486-498.	4.4	68
64	Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. Journal of Geophysical Research, 2006, 111,	3.3	67
65	Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophysical Journal International, 2008, 175, 627-648.	2.4	66
66	GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 2022, 40, 243-255.	3.4	64
67	A coupled petrological-tectonic model for sedimentary basin evolution: the influence of metamorphic reactions on basin subsidence. Terra Nova, 2002, 13, 354-359.	2.1	63
68	Migration of metamorphic fluid: some aspects of mass and heat transfer. Earth-Science Reviews, 1992, 32, 107-121.	9.1	59
69	Thermochemical interpretation of 1â€Ð seismic data for the lower mantle: The significance of nonadiabatic thermal gradients and compositional heterogeneity. Journal of Geophysical Research, 2009, 114, .	3.3	57
70	Extreme Crustal Metamorphism during a Neoproterozoic Event in Sri Lanka: A Study of Dry Mafic Granulites. Journal of Geology, 2007, 115, 563-582.	1.4	56
71	Metamorphic fluids and anomalous porosities in the lower crust. Tectonophysics, 1990, 182, 47-55.	2.2	55
72	Strength of (Mg,Fe)2SiO4 wadsleyite determined by relaxation of transformation stress. Physics of the Earth and Planetary Interiors, 2000, 120, 63-78.	1.9	53

#	Article	IF	CITATIONS
73	Diffusion-controlled development of silica-undersaturated domains in felsic granulites of the Bohemian Massif (Variscan belt of Central Europe). Contributions To Mineralogy and Petrology, 2006, 153, 237-250.	3.1	52
74	Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 2019, 196, 102874.	9.1	49
75	Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions. Earth and Planetary Science Letters, 2006, 248, 579-598.	4.4	48
76	Correlation of Growth and Breakdown of Major and Accessory Minerals in Metapelites from Campolungo, Central Alps. Journal of Petrology, 2011, 52, 2293-2334.	2.8	46
77	An analytical solution for solitary porosity waves: dynamic permeability and fluidization of nonlinear viscous and viscoplastic rock. Geofluids, 2015, 15, 269-292.	0.7	46
78	Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	45
79	On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. Journal of Geophysical Research, 2009, 114, .	3.3	45
80	Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos, 2009, 112, 986-991.	1.4	43
81	Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle. Journal of Geophysical Research, 2008, 113, .	3.3	40
82	Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geological Society Special Publication, 2010, 332, 99-114.	1.3	40
83	Constraints on phase diagram topology for the system CaO?MgO?SiO2?CO2?H2O. Contributions To Mineralogy and Petrology, 1990, 104, 1-7.	3.1	38
84	Potential causes for the nonâ€Newtonian rheology of crystalâ€bearing magmas. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	37
85	Metamorphic CO2 production from calc-silicate rocks via garnet-forming reactions in the CFAS–H2O–CO2 system. Contributions To Mineralogy and Petrology, 2013, 166, 1655-1675.	3.1	35
86	A Hydromechanical Model for Lower Crustal Fluid Flow. Lecture Notes in Earth System Sciences, 2013, , 599-658.	0.6	35
87	Natural moissanite (SiC) – a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Progress in Earth and Planetary Science, 2014, 1, .	3.0	35
88	(De)compaction of porous viscoelastoplastic media: Solitary porosity waves. Journal of Geophysical Research: Solid Earth, 2015, 120, 4843-4862.	3.4	35
89	Uncertainty of mantle geophysical properties computed from phase equilibrium models. Geophysical Research Letters, 2016, 43, 5026-5034.	4.0	35
90	Growth of myrmekite coronas by contact metamorphism of granitic mylonites in the aureole of Cima di Vila, Eastern Alps, Italy. Journal of Metamorphic Geology, 2002, 20, 203-213.	3.4	34

#	Article	IF	CITATIONS
91	Melting of siderite to 20GPa and thermodynamic properties of FeCO3-melt. Chemical Geology, 2015, 400, 34-43.	3.3	34
92	Mapping the Earth's thermochemical and anisotropic structure using global surface wave data. Journal of Geophysical Research, 2011, 116, .	3.3	33
93	Effects of chemical composition, water and temperature on physical properties of continental crust. Geochemistry, Geophysics, Geosystems, 2015, 16, 2431-2449.	2.5	33
94	Lead transport in intra-oceanic subduction zones: 2D geochemical–thermo-mechanical modeling of isotopic signatures. Lithos, 2014, 208-209, 265-280.	1.4	32
95	Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland. European Journal of Mineralogy, 2002, 14, 647-672.	1.3	31
96	Phase relations, singularities and thermobarometry of metamorphic assemblages containing phengite, chlorite, biotite, K-feldspar, quartz and H2O. Contributions To Mineralogy and Petrology, 2000, 139, 555-569.	3.1	27
97	Compactionâ€Driven Fluid Localization as an Explanation for Lower Crustal Electrical Conductors in an Intracontinental Setting. Geophysical Research Letters, 2020, 47, e2020GL088455.	4.0	26
98	Geological evidence and modeling of melt migration by porosity waves in the sub-arc mantle of Kohistan (Pakistan). Geology, 2011, 39, 1091-1094.	4.4	25
99	Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	25
100	Seismo-hydro-mechanical modelling of the seismic cycle: Methodology and implications for subduction zone seismicity. Tectonophysics, 2020, 791, 228504.	2.2	25
101	Fluid-mediated selective dissolution of subducting carbonaceous material: Implications for carbon recycling and fluid fluxes at forearc depths. Chemical Geology, 2020, 549, 119682.	3.3	25
102	Metamorphism and phase relations in carbonate rocks from the Nevado-Filábride Complex (Cordilleras Béticas, Spain): application of the Ttn + Rt + Cal + Qtz + Gr buffer. Contributions To Mineralogy and Petrology, 1997, 126, 292-302.	3.1	23
103	P-T estimates and timing of the sapphirine-bearing metamorphic overprint in kyanite eclogites from Central Rhodope, northern Greece. Petrology, 2013, 21, 507-521.	0.9	22
104	Mid-Crustal Focused Fluid Movement: Thermal Consequences and Silica Transport. , 1997, , 235-250.		22
105	Radial 1â€D seismic structures in the deep mantle in mantle convection simulations with selfâ€consistently calculated mineralogy. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	21
106	An experimental study of the role of shear deformation on partial melting of a synthetic metapelite. Tectonophysics, 2011, 503, 92-99.	2.2	20
107	Physical contradictions and remedies using simple polythermal equations of state. American Mineralogist, 2009, 94, 1616-1619.	1.9	19
108	A primer in gibbs energy minimization for geophysicists. Petrology, 2017, 25, 526-534.	0.9	16

#	Article	IF	CITATIONS
109	Direct numerical simulation of two-phase flow: Effective rheology and flow patterns of particle suspensions. Earth and Planetary Science Letters, 2010, 290, 1-12.	4.4	15
110	Incorporating metamorphism in geodynamic models: the mass conservation problem. Geophysical Journal International, 2011, 186, 6-10.	2.4	15
111	Precalculated phase equilibrium models for geophysical properties of the crust and mantle as a function of composition. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	12
112	PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling. Acta Geotechnica, 2009, 4, 107-115.	5.7	10
113	Liquidâ€vapor phase relations in the Siâ€O system: A calorically constrained van der Waalsâ€ŧype model. Journal of Geophysical Research E: Planets, 2016, 121, 1641-1666.	3.6	10
114	Bulk properties and near-critical behaviour of SiO2 fluid. Earth and Planetary Science Letters, 2018, 491, 11-20.	4.4	10
115	Melting relations in the system FeCO3–MgCO3 and thermodynamic modelling of Fe–Mg carbonate melts. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	8
116	Serpentinite dehydration at low pressures. Swiss Journal of Geosciences, 2022, 115, .	1.2	5
117	VERTEXVIEW: An interactive program to analyze and plot petrological phase diagrams. Computers and Geosciences, 1997, 23, 883-888.	4.2	4
118	Notes on the creation and manipulation of solid solution models. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	4
119	Relationships Between Seismic Wave-Speed, Density, and Electrical Conductivity Beneath Australia from Seismology, Mineralogy, and Laboratory-Based Conductivity Profiles. , 2015, , 145-171.		3
120	Reply to discussion of †Crustal fluid contamination in the Bushveld Complex, South Africa: an analogue for subduction zone fluid migration' by Roger Scoon and Andrew Mitchell (2020). International Geology Review, 2020, , 1-6.	2.1	3
121	Crustal fluid contamination in the Bushveld Complex, South Africa: An analogue for subduction zone fluid migration. International Geology Review, 2021, 63, 1838-1862.	2.1	2
122	An Algorithm for Thermodynamic Parameter Optimization: Application to the Martian Mantle. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009399.	2.5	2