Arnaud Bertsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894973/publications.pdf

Version: 2024-02-01

110 papers 4,946 citations

94381 37 h-index 65 g-index

112 all docs

112 docs citations

times ranked

112

5698 citing authors

#	Article	IF	CITATIONS
1	Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab on A Chip, 2004, 4, 241.	3.1	284
2	Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmologica, 2009, 87, 433-437.	0.6	257
3	First Steps toward Noninvasive Intraocular Pressure Monitoring with a Sensing Contact Lens. , 2004, 45, 3113.		209
4	Static micromixers based on large-scale industrial mixer geometry. Lab on A Chip, 2001, 1, 56.	3.1	185
5	Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsystem Technologies, 1997, 3, 42-47.	1.2	163
6	Rapid prototyping of small size objects. Rapid Prototyping Journal, 2000, 6, 259-266.	1.6	153
7	Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosensors and Bioelectronics, 2004, 19, 1309-1318.	5.3	153
8	3D microfabrication by combining microstereolithography and thick resist UV lithography. Sensors and Actuators A: Physical, 1999, 73, 14-23.	2.0	145
9	Microfabrication of ceramic components by microstereolithography. Journal of Micromechanics and Microengineering, 2004, 14, 197-203.	1.5	140
10	Demonstration of cortical recording using novel flexible polymer neural probes. Sensors and Actuators A: Physical, 2008, 143, 90-96.	2.0	134
11	Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab on A Chip, 2013, 13, 204-207.	3.1	121
12	Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab on A Chip, 2004, 4, 114.	3.1	114
13	In Vivo Electrical Impedance Spectroscopy of Tissue Reaction to Microelectrode Arrays. IEEE Transactions on Biomedical Engineering, 2009, 56, 1909-1918.	2.5	111
14	Onâ€Chip Fabrication of Paclitaxelâ€Loaded Chitosan Nanoparticles for Cancer Therapeutics. Advanced Functional Materials, 2014, 24, 432-441.	7.8	103
15	Conductive SU8 Photoresist for Microfabrication. Advanced Functional Materials, 2005, 15, 1511-1516.	7.8	102
16	Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107, 275-281.	2.0	87
17	Cell immersion and cell dipping in microfluidic devicesElectronic supplementary information (ESI) available: cell dipping video sequence from which Fig. 7 was extracted and cell dipping video sequence with close-ups. See http://www.rsc.org/suppdata/lc/b3/b311210a/. Lab on A Chip, 2004, 4, 148.	3.1	81
18	Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology. Journal of Micromechanics and Microengineering, 2004, 14, 324-331.	1.5	79

#	Article	IF	CITATIONS
19	pH-Controlled Diffusion of Proteins with Different pl Values Across a Nanochannel on a Chip. Nano Letters, 2006, 6, 543-547.	4. 5	78
20	Microfluidic Manipulation of Core/Shell Nanoparticles for Oral Delivery of Chemotherapeutics: A New Treatment Approach for Colorectal Cancer. Advanced Materials, 2016, 28, 4134-4141.	11.1	74
21	Intracellular Recording of Cardiomyocyte Action Potentials with Nanopatterned Volcano-Shaped Microelectrode Arrays. Nano Letters, 2019, 19, 6173-6181.	4.5	74
22	Stereolithography and microtechniques. Microsystem Technologies, 1996, 2, 97-102.	1.2	73
23	Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications. Chemical Communications, 2012, 48, 7744.	2.2	71
24	Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide. Nanoscale, 2012, 4, 5718.	2.8	70
25	SU8-Silver Photosensitive Nanocomposite. Advanced Engineering Materials, 2004, 6, 719-724.	1.6	68
26	SU-8 nanocomposite photoresist with low stress properties for microfabrication applications. Microelectronic Engineering, 2006, 83, 1966-1970.	1.1	61
27	Partial release and detachment of microfabricated metal and polymer structures by anodic metal dissolution. Journal of Microelectromechanical Systems, 2005, 14, 383-391.	1.7	55
28	Morphological Tuning of Polymeric Nanoparticles via Microfluidic Platform for Fuel Cell Applications. Journal of the American Chemical Society, 2012, 134, 18904-18907.	6.6	55
29	Nafion/chitosan-wrapped CNT nanocomposite membrane for high-performance direct methanol fuel cells. RSC Advances, 2013, 3, 7337.	1.7	52
30	Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation. ACS Applied Materials & Differentiation, 8, 13777-13784.	4.0	52
31	Microfluidicâ€Assisted Selfâ€Assembly of Complex Dendritic Polyethylene Drug Delivery Nanocapsules. Advanced Materials, 2014, 26, 3118-3123.	11.1	49
32	Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing. Micromachines, 2018, 9, 86.	1.4	49
33	Simulation of epiretinal prostheses - Evaluation of geometrical factors affecting stimulation thresholds. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 44.	2.4	48
34	Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale, 2013, 5, 11710.	2.8	48
35	A soft contact lens with a MEMS strain gage embedded for intraocular pressure monitoring. , 0, , .		47
36	Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Biomedical Microdevices, 2012, 14, 819-828.	1.4	47

#	Article	lF	Citations
37	Healthy Aims: Developing New Medical Implants and Diagnostic Equipment. IEEE Pervasive Computing, 2008, 7, 14-21.	1.1	44
38	On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine, 2015, 10, 3431-3449.	1.7	43
39	SU-8 nanocomposite coatings with improved tribological performance for MEMS. Surface and Coatings Technology, 2006, 201, 2289-2295.	2.2	40
40	A Simple and Reliable PDMS and SU-8 Irreversible Bonding Method and Its Application on a Microfluidic-MEA Device for Neuroscience Research. Micromachines, 2015, 6, 1923-1934.	1.4	39
41	Field effect modulated nanofluidic diode membrane based on Al2O3/W heterogeneous nanopore arrays. Applied Physics Letters, 2013, 102, 213108.	1.5	37
42	Microstereolithography: a new process to build complex 3D objects., 1999,,.		36
43	Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing. Microsystems and Nanoengineering, 2019, 5, 11.	3.4	36
44	Combining microstereolithography and thick resist UV lithography for 3D microfabrication. , 0, , .		35
45	An improved model for predicting electrical conductance in nanochannels. Physical Chemistry Chemical Physics, 2015, 17, 4160-4167.	1.3	35
46	Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening. Lab on A Chip, 2011, 11, 2352.	3.1	34
47	Label-Free Recognition of Drug Resistance via Impedimetric Screening of Breast Cancer Cells. PLoS ONE, 2013, 8, e57423.	1.1	34
48	High aspect ratio, 3D structuring of photoresist materials by ion beam LIGA. Microelectronic Engineering, 2003, 67-68, 96-103.	1.1	33
49	Temperature Sensitivity of Nanochannel Electrical Conductance. ACS Nano, 2015, 9, 4563-4571.	7.3	33
50	lonic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube. Nano Energy, 2016, 23, 114-121.	8.2	32
51	Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects. Applied Physics Letters, 2007, 91, .	1.5	30
52	Magnetically Aligned Nanodomains: Application in High-Performance Ion Conductive Membranes. ACS Applied Materials & Diterfaces, 2014, 6, 7099-7107.	4.0	30
53	Towards a nanostructured thermoelectric generator using ion-track lithography. Journal of Micromechanics and Microengineering, 2008, 18, 104015.	1.5	29
54	Direct Observation of Transitions between Surface-Dominated and Bulk Diffusion Regimes in Nanochannels. Analytical Chemistry, 2009, 81, 5407-5412.	3.2	28

#	Article	IF	Citations
55	Instrumented Knee Prosthesis for Force and Kinematics Measurements. IEEE Transactions on Automation Science and Engineering, 2013, 10, 615-624.	3.4	27
56	In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nature Communications, 2017, 8, 1239.	5.8	26
57	Pore Size Manipulation in 3D Printed Cryogels Enables Selective Cell Seeding. Advanced Materials Technologies, 2018, 3, 1700340.	3.0	26
58	Microstereolithography: concepts and applications. , 0, , .		23
59	Resistivity probing of multi-layered tissue phantoms using microelectrodes. Physiological Measurement, 2004, 25, 645-658.	1.2	23
60	Neural probe combining microelectrodes and a droplet-based microdialysis collection system for high temporal resolution sampling. Lab on A Chip, 2016, 16, 917-924.	3.1	23
61	Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe. Journal of Electrical Bioimpedance, 2010, 1, 84-92.	0.5	23
62	3D micromixers-downscaling large scale industrial static mixers. , 0, , .		21
63	Fluorineâ€Based Plasma Treatment of Biocompatible Silicone Elastomer: The Effect of Temperature on Etch Rate and Surface Properties. Plasma Processes and Polymers, 2008, 5, 246-255.	1.6	21
64	Industrial photochemistry XXIV. Relations between light flux and polymerized depth in laser stereophotolithography. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107, 283-290.	2.0	20
65	Microstereolithography: a Review. Materials Research Society Symposia Proceedings, 2002, 758, 111.	0.1	17
66	Microfluidic hydrogel layers with multiple gradients to stimulate and perfuse three-dimensional neuronal cell cultures. Procedia Chemistry, 2009, 1, 369-372.	0.7	17
67	Simulations to study spatial extent of stimulation and effect of electrode–tissue gap in subretinal implants. Medical Engineering and Physics, 2011, 33, 755-763.	0.8	17
68	A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity. Lab on A Chip, 2013, 13, 4549.	3.1	17
69	Microstereophotolithography and shape memory alloy for the fabrication of miniaturized actuators. Sensors and Actuators A: Physical, 1997, 62, 741-747.	2.0	16
70	Polybenzimidazoleâ€decorated carbon nanotube: A highâ€performance proton conductor. Physica Status Solidi - Rapid Research Letters, 2012, 6, 318-320.	1.2	16
71	Nanovolcano microelectrode arrays: toward long-term on-demand registration of transmembrane action potentials by controlled electroporation. Microsystems and Nanoengineering, 2020, 6, 67.	3.4	16
72	Enclosed Electronic System for Force Measurements in Knee Implants. Sensors, 2014, 14, 15009-15021.	2.1	15

#	Article	IF	Citations
73	Composite hydrogel-loaded alumina membranes for nanofluidic molecular filtration. Journal of Membrane Science, 2015, 477, 151-156.	4.1	15
74	Microfluidic-assisted bioprinting of tissues and organoids at high cell concentrations. Biofabrication, 2021, 13, 025006.	3.7	15
75	Instrumented prosthesis for knee implants monitoring. , 2011, , .		14
76	Design and test of a MEMS strain-sensing device for monitoring artificial knee implants. Biomedical Microdevices, 2013, 15, 831-839.	1.4	14
77	Microstereolithography. , 2011, , 81-112.		12
78	Thermal control of ionic transport and fluid flow in nanofluidic channels. Nanoscale, 2015, 7, 18799-18804.	2.8	12
79	Volcano-Shaped Scanning Probe Microscopy Probe for Combined Force-Electrogram Recordings from Excitable Cells. Nano Letters, 2020, 20, 4520-4529.	4.5	12
80	Stereolithography and microtechniques. Microsystem Technologies, 1995, 2, 97-102.	1.2	11
81	A microfluidic-based frequency-multiplexing impedance sensor (FMIS). Lab on A Chip, 2012, 12, 2712.	3.1	11
82	Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing. Lab on A Chip, 2021, 21, 3686-3694.	3.1	11
83	Methods and algorithms for the slicing process in microstereolithography. Rapid Prototyping Journal, 2002, 8, 190-199.	1.6	10
84	Feedback-free microfluidic oscillator with impinging jets. Physical Review Fluids, 2020, 5, .	1.0	10
85	Impinging planar jets: hysteretic behaviour and origin of the self-sustained oscillations. Journal of Fluid Mechanics, 2021, 913, .	1.4	9
86	Flexible microchannels with integrated nanoporous membranes for filtration and separation of molecules and particles. , 0 , , .		7
87	Demonstration of cortical recording and reduced inflammatory response using flexible polymer neural probes., 2007,,.		7
88	In-flow electrochemical detection of chemicals in droplets with pyrolysed photoresist electrodes: application as a module for quantification of microsampled dopamine. Lab on A Chip, 2021, 21, 3328-3337.	3.1	7
89	Design and control of compliant microrobots. , 0, , .		6
90	Conductive SU8-silver composite photopolymer. , 0, , .		6

#	Article	IF	Citations
91	Ceramic microcomponents by microstereolithography., 0, , .		6
92	Technology developments to initiate a next generation of Cochlear Implants. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 515-8.	0.5	6
93	Microstereolithography. , 2016, , 20-44.		6
94	Microphotofabrication of Very Small Objects: Pushing the Limits of Stereophotolithography. Molecular Crystals and Liquid Crystals, 1998, 315, 223-234.	0.3	5
95	Actionneurs miniatures à alliages à mémoire de forme fabriqués par microstéréophotolithographie. Journal De Physique III, 1996, 6, 1759-1774.	0.3	5
96	Microstereolithography., 2020,, 25-56.		4
97	Composite photopolymer microstructures: from planar to 3D devices. , 0, , .		3
98	The sensing contact lens. Medical Device Technology, 2006, 17, 19-21.	0.1	3
99	Controlled Release Drug Coatings on Flexible Neural Probes. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6613-6.	0.5	2
100	The Effect of Biodegradable Drug Release Coatings on the Electrical Characteristics of Neural Electrodes., 2007,,.		2
101	Smart instrumentation for determination of ligament stiffness and ligament balance in total knee arthroplasty. Medical Engineering and Physics, 2014, 36, 721-725.	0.8	2
102	Swinging jets. Physical Review Fluids, 2020, 5, .	1.0	2
103	Dielectrophoretic Traps for Efficient Bead and Cell Trapping and Formation of Aggregates of Controlled Size and Composition. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
104	Microrobots realized by microstereophotolithography and actuated by shape memory alloys. , 0, , .		1
105	Contraction Measurements of Cardiomyocytes Grown on Silicon Cantilevers. , 2007, , .		1
106	Al <inf>2</inf> 0 <inf>3</inf> /W hetero-structured nanopore membranes: From native to tunable nanofluidic diodes. , 2013, , .		1
107	Multimaterial Nanoporous Membranes Shaped through High Aspect-Ratio Sacrificial Silicon Nanostructures. ACS Omega, 2017, 2, 2387-2394.	1.6	1
108	On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426.	3.2	1

#	Article	IF	CITATIONS
109	Direct measurement of diffusing proteins in nanochannels using fluorescence correlation spectroscopy. Procedia Chemistry, 2009, 1, 1343-1346.	0.7	0
110	Thermal gate, a new tool for ionic transport control inside nanochannels. , 2015, , .		0