Rachel O'Reilly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews, 2006, 35, 1068.	18.7	868
2	Advances and challenges in smart and functional polymer vesicles. Soft Matter, 2009, 5, 3544.	1.2	531
3	End group removal and modification of RAFT polymers. Polymer Chemistry, 2010, 1, 149-157.	1.9	514
4	Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011, 40, 2402.	18.7	486
5	Stimuli responsive materials. Chemical Society Reviews, 2013, 42, 7055.	18.7	404
6	Shell Click-Crosslinked (SCC) Nanoparticles:Â A New Methodology for Synthesis and Orthogonal Functionalization. Journal of the American Chemical Society, 2005, 127, 16892-16899.	6.6	314
7	Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chemical Science, 2011, 2, 955-960.	3.7	310
8	Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chemistry of Materials, 2005, 17, 5976-5988.	3.2	246
9	Dendrimers Clicked Together Divergently. Macromolecules, 2005, 38, 5436-5443.	2.2	240
10	Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. Journal of Polymer Science Part A, 2006, 44, 5203-5217.	2.5	238
11	Chemically programmed self-sorting of gelator networks. Nature Communications, 2013, 4, 1480.	5.8	230
12	Permeable Protein-Loaded Polymersome Cascade Nanoreactors by Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 1263-1267.	2.3	193
13	Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures' Self-Assembly Using Polymer Building Blocks. Journal of the American Chemical Society, 2019, 141, 2742-2753.	6.6	186
14	Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 2018, 4, 718-723.	5.3	181
15	Additive-Free Clicking for Polymer Functionalization and Coupling by Tetrazine–Norbornene Chemistry. Journal of the American Chemical Society, 2011, 133, 13828-13831.	6.6	175
16	To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chemical Society Reviews, 2013, 42, 7204-7213.	18.7	172
17	Facile one pot synthesis of a range of reversible addition–fragmentation chain transfer (RAFT) agents. Chemical Communications, 2008, , 4183.	2.2	169
18	Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nature Communications, 2020, 11, 1420.	5.8	167

#	Article	IF	CITATIONS
19	1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chemical Science, 2017, 8, 4223-4230.	3.7	165
20	The analysis of solution self-assembled polymeric nanomaterials. Chemical Society Reviews, 2014, 43, 2412-2425.	18.7	161
21	Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine. Bioconjugate Chemistry, 2019, 30, 2300-2311.	1.8	161
22	Precision Epitaxy for Aqueous 1D and 2D Poly(Îμ-caprolactone) Assemblies. Journal of the American Chemical Society, 2017, 139, 16980-16985.	6.6	159
23	Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer. Chemical Communications, 2010, 46, 1091-1093.	2.2	157
24	Noncovalently Connected Micelles, Nanoparticles, and Metal-Functionalized Nanocages Using Supramolecular Self-Assembly. Journal of the American Chemical Society, 2008, 130, 8714-8725.	6.6	155
25	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	13.8	154
26	Design of Highly Active Iron-Based Catalysts for Atom Transfer Radical Polymerization:Â Tridentate Salicylaldiminato Ligands Affording near Ideal Nernstian Behavior. Journal of the American Chemical Society, 2003, 125, 8450-8451.	6.6	144
27	Multistep DNAâ€Templated Reactions for the Synthesis of Functional Sequence Controlled Oligomers. Angewandte Chemie - International Edition, 2010, 49, 7948-7951.	7.2	144
28	Fluorogenic 1,3-Dipolar Cycloaddition within the Hydrophobic Core of a Shell Cross-Linked Nanoparticle. Chemistry - A European Journal, 2006, 12, 6776-6786.	1.7	142
29	Comparison of photo- and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies. Polymer Chemistry, 2017, 8, 2860-2871.	1.9	140
30	Block copolymers: controlling nanostructure to generate functional materials – synthesis, characterization, and engineering. Chemical Science, 2016, 7, 1674-1689.	3.7	139
31	Dispersity effects in polymer self-assemblies: a matter of hierarchical control. Chemical Society Reviews, 2017, 46, 4119-4134.	18.7	136
32	Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chemistry, 2012, 4, 491-497.	6.6	135
33	Stretchable and Flexible Buckypaperâ€Based Lactate Biofuel Cell for Wearable Electronics. Advanced Functional Materials, 2019, 29, 1905785.	7.8	132
34	An autonomous molecular assembler for programmable chemical synthesis. Nature Chemistry, 2016, 8, 542-548.	6.6	130
35	Thermoresponsive Polymer-Supported <scp>l</scp> -Proline Micelle Catalysts for the Direct Asymmetric Aldol Reaction in Water. ACS Macro Letters, 2013, 2, 327-331.	2.3	128
36	Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nature Communications, 2014, 5, 5746.	5.8	125

#	Article	IF	CITATIONS
37	Four-coordinate iron complexes bearing α-diimine ligands: efficient catalysts for Atom Transfer Radical Polymerisation (ATRP). Chemical Communications, 2002, , 1850-1851.	2.2	119
38	Tuning the Size of Cylindrical Micelles from Poly(<scp>l</scp> -lactide)- <i>b</i> -poly(acrylic acid) Diblock Copolymers Based on Crystallization-Driven Self-Assembly. Macromolecules, 2013, 46, 9074-9082.	2.2	113
39	Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response. ACS Macro Letters, 2016, 5, 1059-1064.	2.3	112
40	<scp>l</scp> -Proline Functionalized Polymers Prepared by RAFT Polymerization and Their Assemblies as Supported Organocatalysts. Macromolecules, 2011, 44, 7233-7241.	2.2	111
41	Self-assembly of cyclic polymers. Polymer Chemistry, 2015, 6, 2998-3008.	1.9	111
42	Selfâ€Assembly of Hydrophilic Homopolymers: A Matter of RAFT End Groups. Small, 2011, 7, 2070-2080.	5.2	109
43	Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. Journal of the American Chemical Society, 2013, 135, 2875-2878.	6.6	106
44	Functionalized Organocatalytic Nanoreactors: Hydrophobic Pockets for Acylation Reactions in Water. Macromolecules, 2012, 45, 2377-2384.	2.2	105
45	Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via "Living―Crystallization-Driven Self-Assembly of Poly(<scp>I</scp> -lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption. Journal of the American Chemical Society, 2019, 141, 19088-19098.	6.6	104
46	Crystallization-driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics. Soft Matter, 2012, 8, 7408.	1.2	101
47	Polymerization of Methyl Methacrylate Using Four-Coordinate (α-Diimine)iron Catalysts:  Atom Transfer Radical Polymerization vs Catalytic Chain Transfer. Macromolecules, 2003, 36, 2591-2593.	2.2	100
48	Advances in nanoreactor technology using polymeric nanostructures. Current Opinion in Biotechnology, 2013, 24, 639-645.	3.3	100
49	Recent Trends in Advanced Polymer Materials in Agriculture Related Applications. ACS Applied Polymer Materials, 2021, 3, 1203-1217.	2.0	96
50	Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Central Science, 2018, 4, 63-70.	5.3	94
51	"Giant Surfactants―Created by the Fast and Efficient Functionalization of a DNA Tetrahedron with a Temperature-Responsive Polymer. ACS Nano, 2013, 7, 8561-8572.	7.3	93
52	Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale, 2019, 11, 12643-12654.	2.8	91
53	Iron complexes bearing iminopyridine and aminopyridine ligands as catalysts for atom transfer radical polymerisation. Dalton Transactions, 2003, , 2824.	1.6	89
54	One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polymer Chemistry, 2014, 5, 1023-1030.	1.9	88

#	Article	IF	CITATIONS
55	Five-coordinate iron(II) complexes bearing tridentate nitrogen donor ligands as catalysts for atom transfer radical polymerisation. Polyhedron, 2004, 23, 2921-2928.	1.0	84
56	Preparation of orthogonally-functionalized core Click cross-linked nanoparticles. New Journal of Chemistry, 2007, 31, 718-724.	1.4	83
57	Nucleobase Containing Synthetic Polymers: Advancing Biomimicry via Controlled Synthesis and Self-Assembly. Macromolecules, 2012, 45, 7665-7675.	2.2	83
58	A comparative study of the stimuli-responsive properties of DMAEA and DMAEMA containing polymers. Journal of Polymer Science Part A, 2013, 51, 3333-3338.	2.5	83
59	Crystal growth inhibition of tetrahydrofuran hydrate with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers. Chemical Engineering Science, 2011, 66, 6555-6560.	1.9	82
60	α-Diimine, Diamine, and Diphosphine Iron Catalysts for the Controlled Radical Polymerization of Styrene and Acrylate Monomers. Macromolecules, 2007, 40, 7441-7452.	2.2	81
61	Using Metalloâ€Supramolecular Block Copolymers for the Synthesis of Higher Order Nanostructured Assemblies. Macromolecular Rapid Communications, 2010, 31, 37-52.	2.0	81
62	Polymers with molecular weight dependent LCSTs are essential for cooperative behaviour. Polymer Chemistry, 2012, 3, 794.	1.9	80
63	Exploiting nucleobase-containing materials – from monomers to complex morphologies using RAFT dispersion polymerization. Polymer Chemistry, 2015, 6, 106-117.	1.9	79
64	Blocked isocyanates: from analytical and experimental considerations to non-polyurethane applications. Polymer Chemistry, 2016, 7, 7351-7364.	1.9	79
65	Ringâ€Opening Metathesis Polymerization in Aqueous Media Using a Macroinitiator Approach. Angewandte Chemie - International Edition, 2018, 57, 10672-10676.	7.2	79
66	Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions. Journal of the American Chemical Society, 2012, 134, 1446-1449.	6.6	78
67	Advantages of Block Copolymer Synthesis by RAFT-Controlled Dispersion Polymerization in Supercritical Carbon Dioxide. Macromolecules, 2013, 46, 6843-6851.	2.2	78
68	Self-Assembly of Temperature-Responsive Protein–Polymer Bioconjugates. Bioconjugate Chemistry, 2015, 26, 1890-1899.	1.8	78
69	Predicting Monomers for Use in Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 15733-15737.	7.2	78
70	Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Progress in Polymer Science, 2020, 107, 101278.	11.8	77
71	Functional Degradable Polymers by Xanthate-Mediated Polymerization. Macromolecules, 2014, 47, 2847-2852.	2.2	76
72	Ring-opening metathesis polymerization-induced self-assembly (ROMPISA). Chemical Communications, 2019, 55, 9066-9071.	2.2	75

#	Article	IF	CITATIONS
73	Sequence-specific synthesis of macromolecules using DNA-templated chemistry. Chemical Communications, 2012, 48, 5614.	2.2	74
74	Precision polymers: a kinetic approach for functional poly(norbornenes). Chemical Science, 2014, 5, 2246-2250.	3.7	74
75	Reversible morphological switching of nanostructures in solution. Chemical Communications, 2011, 47, 355-357.	2.2	72
76	Aminomaleimide fluorophores: a simple functional group with bright, solvent dependent emission. Chemical Communications, 2015, 51, 9733-9736.	2.2	72
77	Synthesis of chiral micelles and nanoparticles from amino acid based monomers using RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 3690-3702.	2.5	70
78	Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058.	2.6	69
79	The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery. Accounts of Chemical Research, 2017, 50, 2496-2509.	7.6	69
80	Aldol reactions catalyzed by l-proline functionalized polymeric nanoreactors in water. Chemical Communications, 2012, 48, 9699.	2.2	68
81	Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polymer Chemistry, 2014, 5, 1427-1436.	1.9	68
82	Polymerization-Induced Polymersome Fusion. Journal of the American Chemical Society, 2019, 141, 20234-20248.	6.6	68
83	Strategies for preparing fluorescently labelled polymer nanoparticles. Polymer International, 2015, 64, 174-182.	1.6	66
84	A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging. Soft Matter, 2012, 8, 3322.	1.2	65
85	Orthogonal Modification of Norbornene-Functional Degradable Polymers. ACS Macro Letters, 2012, 1, 1285-1290.	2.3	64
86	Photoinitiated Polymerization-Induced Self-Assembly in the Presence of Surfactants Enables Membrane Protein Incorporation into Vesicles. Macromolecules, 2018, 51, 6190-6201.	2.2	63
87	Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Letters, 2019, 8, 596-602.	2.3	63
88	Synthesis of Core Functionalized Polymer Micelles and Shell Cross-Linked Nanoparticles. Macromolecules, 2008, 41, 2998-3006.	2.2	62
89	Effect of Complementary Nucleobase Interactions on the Copolymer Composition of RAFT Copolymerizations. ACS Macro Letters, 2013, 2, 581-586.	2.3	62
90	Tuning the catalytic activity of <scp>l</scp> -proline functionalized hydrophobic nanogel particles in water. Chemical Science, 2013, 4, 965-969.	3.7	61

#	Article	IF	CITATIONS
91	Organocatalytic Tunable Amino Acid Polymers Prepared by Controlled Radical Polymerization. Macromolecules, 2010, 43, 6374-6380.	2.2	60
92	Cyclic Graft Copolymer Unimolecular Micelles: Effects of Cyclization on Particle Morphology and Thermoresponsive Behavior. Macromolecules, 2016, 49, 2802-2813.	2.2	60
93	Hollow nanostructures from self-assembled supramolecular metallo-triblock copolymers. Soft Matter, 2009, 5, 2361.	1.2	57
94	Multicomponent Organic Nanoparticles for Fluorescence Studies in Biological Systems. Advanced Functional Materials, 2012, 22, 2469-2478.	7.8	56
95	Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nature Communications, 2020, 11, 3250.	5.8	56
96	pHâ€Responsive Vesicles from a Schizophrenic Diblock Copolymer. Macromolecular Chemistry and Physics, 2010, 211, 1530-1537.	1.1	55
97	Catalytic polymeric nanoreactors: more than a solid supported catalyst. MRS Communications, 2012, 2, 119-126.	0.8	54
98	RAFT dispersion polymerization: a method to tune the morphology of thymine-containing self-assemblies. Polymer Chemistry, 2015, 6, 4984-4992.	1.9	54
99	Missing Poly(<i>N</i> -vinyl lactam) Kinetic Hydrate Inhibitor: High-Pressure Kinetic Hydrate Inhibition of Structure II Gas Hydrates with Poly(<i>N</i> -vinyl piperidone) and Other Poly(<i>N</i> -vinyl lactam) Homopolymers. Energy & Fuels, 2011, 25, 4595-4599.	2.5	53
100	pH-switchable polymer nanostructures for controlled release. Polymer Chemistry, 2012, 3, 3007.	1.9	53
101	Exploiting the tetrazine–norbornene reaction for single polymer chain collapse. Nanoscale, 2014, 6, 4102-4107.	2.8	53
102	New Functional Handle for Use as a Self-Reporting Contrast and Delivery Agent in Nanomedicine. Journal of the American Chemical Society, 2013, 135, 9518-9524.	6.6	52
103	Synthesis of Hollow Responsive Functional Nanocages Using a Metal–Ligand Complexation Strategy. Macromolecules, 2008, 41, 3571-3578.	2.2	51
104	Tetrazineâ€Norbornene Click Reactions to Functionalize Degradable Polymers Derived from Lactide. Macromolecular Rapid Communications, 2011, 32, 1362-1366.	2.0	51
105	Controlling the synthesis of degradable vinyl polymers by xanthate-mediated polymerization. Polymer Chemistry, 2015, 6, 7447-7454.	1.9	51
106	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie - International Edition, 2017, 56, 9178-9182.	7.2	51
107	Probing and Tuning the Permeability of Polymersomes. ACS Central Science, 2021, 7, 30-38.	5.3	51
108	The Missing Lactam-Thermoresponsive and Biocompatible Poly(<i>N</i> -vinylpiperidone) Polymers by Xanthate-Mediated RAFT Polymerization. Macromolecules, 2011, 44, 886-893.	2.2	50

#	Article	IF	CITATIONS
109	Poly(Pentafluorophenyl Methacrylate)â€Based Nanoâ€Objects Developed by Photoâ€PISA as Scaffolds for Postâ€Polymerization Functionalization. Macromolecular Rapid Communications, 2019, 40, e1800460.	2.0	50
110	Predicting Monomers for Use in Aqueous Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 466-472.	2.3	50
111	Fluorescent and chemico-fluorescent responsive polymers from dithiomaleimide and dibromomaleimide functional monomers. Chemical Science, 2014, 5, 2717.	3.7	49
112	Manipulating the fluorescence lifetime at the sub-cellular scale via photo-switchable barcoding. Nature Communications, 2020, 11, 2460.	5.8	49
113	Synthesis and Self-Assembly of Amphiphilic Chiral Poly(amino acid) Star Polymers. Macromolecules, 2010, 43, 5949-5955.	2.2	47
114	Size and shape affects the antimicrobial activity of quaternized nanoparticles. Journal of Polymer Science Part A, 2019, 57, 255-259.	2.5	47
115	Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups. ACS Macro Letters, 2012, 1, 222-226.	2.3	46
116	Recent developments in entropyâ€driven ringâ€opening metathesis polymerization: Mechanistic considerations, unique functionality, and sequence control. Journal of Polymer Science Part A, 2019, 57, 1621-1634.	2.5	46
117	Polymers for Biomedical Applications: The Importance of Hydrophobicity in Directing Biological Interactions and Application Efficacy. Biomacromolecules, 2021, 22, 4459-4469.	2.6	45
118	Polymeric ligands as homogeneous, reusable catalyst systems for copper assisted click chemistry. Chemical Communications, 2010, 46, 8719.	2.2	44
119	Poly(sarcosine)-Based Nano-Objects with Multi-Protease Resistance by Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Biomacromolecules, 2018, 19, 4453-4462.	2.6	44
120	Understanding the CDSA of poly(lactide) containing triblock copolymers. Polymer Chemistry, 2017, 8, 5504-5512.	1.9	43
121	Rational design of substituted maleimide dyes with tunable fluorescence and solvafluorochromism. Chemical Communications, 2018, 54, 3339-3342.	2.2	42
122	100th Anniversary of Macromolecular Science Viewpoint: The Role of Hydrophobicity in Polymer Phenomena. ACS Macro Letters, 2020, 9, 1700-1707.	2.3	42
123	Length Control of Biodegradable Fiber-Like Micelles via Tuning Solubility: A Self-Seeding Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-Containing Triblock Copolymers. Macromolecules, 2020, 53, 1514-1521.	2.2	41
124	The Copolymer Blending Method: A New Approach for Targeted Assembly of Micellar Nanoparticles. Macromolecules, 2015, 48, 6516-6522.	2.2	40
125	The critical importance of size on thermoresponsive nanoparticle transition temperatures: gold and micelle-based polymer nanoparticles. Chemical Communications, 2011, 47, 11627.	2.2	38
126	Catalytic Y-tailed amphiphilic homopolymers – aqueous nanoreactors for high activity, low loading SCS pincer catalysts. Polymer Chemistry, 2013, 4, 2033.	1.9	37

#	Article	IF	CITATIONS
127	Stabilization of Amino Acid Derived Diblock Copolymer Micelles through Favorable <scp>d</scp> : <scp>l</scp> side chain interactions. Macromolecules, 2010, 43, 1309-1318.	2.2	35
128	Micellar nanoparticles with tuneable morphologies through interactions between nucleobase-containing synthetic polymers in aqueous solution. Polymer Chemistry, 2016, 7, 4254-4262.	1.9	35
129	Fluorescent Block Copolymer Micelles That Can Self-Report on Their Assembly and Small Molecule Encapsulation. Macromolecules, 2016, 49, 653-662.	2.2	35
130	Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nature Communications, 2019, 10, 5406.	5.8	35
131	Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Letters, 2020, 9, 226-232.	2.3	35
132	Functional and tuneable amino acid polymers prepared by RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 6814-6826.	2.5	34
133	Using controlled radical polymerisation techniques for the synthesis of functional polymers containing amino acid moieties. Polymer International, 2010, 59, 568-573.	1.6	34
134	Using metal–ligand interactions for the synthesis of metallostar polymers. Dalton Transactions, 2010, 39, 388-391.	1.6	34
135	Highly active, thermoâ€responsive polymeric catalytic system for reuse in aqueous and organic CuAAC reactions. Journal of Polymer Science Part A, 2011, 49, 2878-2885.	2.5	34
136	Structural Characterization of Amphiphilic Homopolymer Micelles Using Light Scattering, SANS, and Cryo-TEM. Macromolecules, 2013, 46, 6319-6325.	2.2	34
137	Spherical polymer micelles: nanosized reaction vessels?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2863-2878.	1.6	33
138	Peptidomimetic bond formation by DNA-templated acyl transfer. Organic and Biomolecular Chemistry, 2011, 9, 1661.	1.5	33
139	Mutual binding of polymer end-groups by complementary π‑'Ï€-stacking: a molecular "Roman Handshake― Chemical Communications, 2013, 49, 454-456.	2.2	33
140	Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity. Faraday Discussions, 2014, 175, 229-240.	1.6	33
141	It is Better with Salt: Aqueous Ring-Opening Metathesis Polymerization at Neutral pH. Journal of the American Chemical Society, 2020, 142, 13878-13885.	6.6	33
142	Molecular recognition driven catalysis using polymeric nanoreactors. Chemical Communications, 2012, 48, 10280.	2.2	32
143	Tuning the aggregation behavior of pH-responsive micelles by copolymerization. Polymer Chemistry, 2015, 6, 2761-2768.	1.9	32
144	The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. European Polymer Journal, 2017, 87, 497-507.	2.6	32

#	Article	IF	CITATIONS
145	Hollow Block Copolymer Nanoparticles through a Spontaneous One-step Structural Reorganization. ACS Nano, 2013, 7, 1120-1128.	7.3	31
146	Fabrication of crystals from single metal atoms. Nature Communications, 2014, 5, 3851.	5.8	31
147	Self-healing, stretchable and robust interpenetrating network hydrogels. Biomaterials Science, 2018, 6, 2932-2937.	2.6	31
148	Recyclable <scp>l</scp> -Proline Functional Nanoreactors with Temperature-Tuned Activity Based on Core–Shell Nanogels. ACS Macro Letters, 2014, 3, 1235-1239.	2.3	30
149	Instant Strong and Responsive Underwater Adhesion Manifested by Bioinspired Supramolecular Polymeric Adhesives. Macromolecules, 2022, 55, 2003-2013.	2.2	30
150	Degradable precision polynorbornenes via ringâ€opening metathesis polymerization. Journal of Polymer Science Part A, 2016, 54, 1236-1242.	2.5	29
151	Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water. Polymer Chemistry, 2016, 7, 2836-2846.	1.9	29
152	Robust bifunctional buckypapers from carbon nanotubes and polynorbornene copolymers for flexible engineering of enzymatic bioelectrodes. Carbon, 2016, 107, 542-547.	5.4	29
153	Blending block copolymer micelles in solution; obstacles of blending. Polymer Chemistry, 2016, 7, 1577-1583.	1.9	29
154	Entrapment and Rigidification of Adenine by a Photo-Cross-Linked Thymine Network Leads to Fluorescent Polymer Nanoparticles. Chemistry of Materials, 2018, 30, 1408-1416.	3.2	28
155	Reactivity and Characterization of Transition-Metal Carbonyl Clusters Using UV Laser Desorption Mass Spectrometry. Organometallics, 1999, 18, 4090-4097.	1.1	27
156	Glutathione-triggered disassembly of isothermally responsive polymer nanoparticles obtained by nanoprecipitation of hydrophilic polymers. Polymer Chemistry, 2014, 5, 126-131.	1.9	27
157	Spatially Restricted Templated Growth of Poly(ε-caprolactone) from Carbon Nanotubes by Crystallization-Driven Self-Assembly. Macromolecules, 2021, 54, 2844-2851.	2.2	27
158	Dual effect of thiol addition on fluorescent polymeric micelles: ON-to-OFF emissive switch and morphology transition. Chemical Communications, 2014, 50, 11492-11495.	2.2	26
159	Graphene oxide single sheets as substrates for high resolution cryoTEM. Soft Matter, 2015, 11, 1265-1270.	1.2	26
160	Effect of Micellization on the Thermoresponsive Behavior of Polymeric Assemblies. ACS Macro Letters, 2015, 4, 1210-1214.	2.3	26
161	Atom-Transfer Cyclization with CuSO ₄ /KBH ₄ : A Formal "Activators Generated by Electron Transfer―Process Also Applicable to Atom-Transfer Polymerization. Journal of Organic Chemistry, 2012, 77, 6778-6788.	1.7	25
162	Complementary light scattering and synchrotron small-angle X-ray scattering studies of the micelle-to-unimer transition of polysulfobetaines. Soft Matter, 2015, 11, 3666-3676.	1.2	25

#	Article	IF	CITATIONS
163	A "Mix-and-Click―Approach to Double Core–Shell Micelle Functionalization. ACS Macro Letters, 2012, 1, 896-901.	2.3	24
164	Preparation of chiral amino acid materials and the study of their interactions with 1,1â€Biâ€2â€naphthol. Journal of Polymer Science Part A, 2012, 50, 3567-3574.	2.5	24
165	Efficient DNA–Polymer Coupling in Organic Solvents: A Survey of Amide Coupling, Thiol-Ene and Tetrazine–Norbornene Chemistries Applied to Conjugation of Poly(N-Isopropylacrylamide). Scientific Reports, 2016, 6, 39192.	1.6	24
166	CO ₂ /pH-responsive particles with built-in fluorescence read-out. Polymer Chemistry, 2016, 7, 5943-5948.	1.9	24
167	Reversibly Manipulating the Surface Chemistry of Polymeric Nanostructures via a "Grafting To― Approach Mediated by Nucleobase Interactions. Macromolecules, 2017, 50, 3662-3670.	2.2	24
168	Exploring RAFT polymerization for the synthesis of bipolar diblock copolymers and their supramolecular self-assembly. Polymer Chemistry, 2011, 2, 720-729.	1.9	23
169	Immobilization of MacMillan catalyst via controlled radical polymerization: catalytic activity and reuse. Polymer Chemistry, 2013, 4, 2304.	1.9	23
170	Nickel(II) α-diimine catalysts for the atom transfer radical polymerization of styrene. Inorganica Chimica Acta, 2006, 359, 4417-4420.	1.2	22
171	Mild and Facile Synthesis of Multi-Functional RAFT Chain Transfer Agents. Polymers, 2009, 1, 3-15.	2.0	22
172	Probing the causes of thermal hysteresis using tunable N _{agg} micelles with linear and brush-like thermoresponsive coronas. Polymer Chemistry, 2017, 8, 233-244.	1.9	22
173	Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules, 2022, 55, 1067-1076.	2.2	22
174	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	2.3	21
175	Complementary Nucleobase Interactions Drive the Hierarchical Self-Assembly of Core–Shell Bottlebrush Block Copolymers toward Cylindrical Supramolecules. Macromolecules, 2020, 53, 9747-9757.	2.2	21
176	Fluorescent polymeric nanovehicles for neural stem cell modulation. Nanoscale, 2016, 8, 17340-17349.	2.8	20
177	First Step toward a Universal Fluorescent Probe: Unravelling the Photodynamics of an Amino–Maleimide Fluorophore. Journal of Physical Chemistry A, 2017, 121, 6357-6365.	1.1	20
178	Biofunctionalizable flexible bucky paper by combination of multi-walled carbon nanotubes and polynorbornene-pyrene – Application to the bioelectrocatalytic reduction of oxygen. Carbon, 2015, 93, 713-718.	5.4	19
179	One-pot synthesis of super-bright fluorescent nanogel contrast agents containing a dithiomaleimide fluorophore. Materials Horizons, 2015, 2, 54-59.	6.4	19
180	Palladium-polymer nanoreactors for the aqueous asymmetric synthesis of therapeutic flavonoids. Polymer Chemistry, 2018, 9, 820-823.	1.9	19

#	Article	IF	CITATIONS
181	Antimicrobial Hyperbranched Polymer–Usnic Acid Complexes through a Combined ROPâ€RAFT Strategy. Macromolecular Rapid Communications, 2020, 41, e2000190.	2.0	19
182	Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Accounts of Chemical Research, 2022, 55, 1609-1619.	7.6	19
183	pH-Responsive Chiral Nanostructures. Australian Journal of Chemistry, 2011, 64, 1041.	0.5	18
184	Polyelectrolyte pK _a from experiment and molecular dynamics simulation. RSC Advances, 2017, 7, 20007-20014.	1.7	18
185	Predicting Monomers for Use in Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie, 2018, 130, 15959-15963.	1.6	17
186	Ringâ€Opening Metathesis Polymerization in Aqueous Media Using a Macroinitiator Approach. Angewandte Chemie, 2018, 130, 10832-10836.	1.6	17
187	A bifunctional triblock polynorbornene/carbon nanotube buckypaper bioelectrode for low-potential/high-current thionine-mediated glucose oxidation by FAD-GDH. Journal of Materials Chemistry A, 2019, 7, 1447-1450.	5.2	17
188	Grafting Density Governs the Thermoresponsive Behavior of P(OEGMA- <i>co</i> -RMA) Statistical Copolymers. ACS Macro Letters, 2020, 9, 1149-1154.	2.3	17
189	The Importance of Cooperativity in Polymer Blending: Toward Controlling the Thermoresponsive Behavior of Blended Block Copolymer Micelles. Macromolecular Rapid Communications, 2020, 41, e1900599.	2.0	17
190	Degradable graft copolymers by ring-opening and reverse addition–fragmentation chain transfer polymerization. Polymer Chemistry, 2012, 3, 2156.	1.9	16
191	Amphiphilic block copolymer selfâ€assemblies of poly(NVP)â€ <i>b</i> â€poly(MDOâ€ <i>co</i> â€vinyl esters): Tunable dimensions and functionalities. Journal of Polymer Science Part A, 2015, 53, 2699-2710.	2.5	16
192	Scalable synthesis of multicolour conjugated polymer nanoparticles via Suzuki-Miyaura polymerisation in a miniemulsion and application in bioimaging. Reactive and Functional Polymers, 2016, 107, 69-77.	2.0	16
193	Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol–ene radical reactions. Polymer Chemistry, 2016, 7, 2337-2341.	1.9	16
194	Reversible ionically-crosslinked single chain nanoparticles as bioinspired and recyclable nanoreactors for <i>N</i> -heterocyclic carbene organocatalysis. Polymer Chemistry, 2018, 9, 5286-5294.	1.9	16
195	Stereocomplexation in novel degradable amphiphilic block copolymer micelles of poly(ethylene oxide) and poly(benzyl α-malate). Soft Matter, 2011, 7, 10987.	1.2	15
196	The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars. Polymer Chemistry, 2017, 8, 5060-5070.	1.9	15
197	Exploiting topology-directed nanoparticle disassembly for triggered drug delivery. Biomaterials, 2018, 180, 184-192.	5.7	15
198	Construction of DNA–polymer hybrids using intercalation interactions. Chemical Communications, 2014, 50, 1338-1340.	2.2	14

#	Article	IF	CITATIONS
199	Studying the activity of the MacMillan catalyst embedded within hydrophobic cross-linked polymeric nanostructures. Polymer Chemistry, 2014, 5, 3487-3494.	1.9	14
200	Osmium Atoms and Os ₂ Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces. Chemistry of Materials, 2015, 27, 5100-5105.	3.2	14
201	Poly(methyl methacrylate-block-vinyl-m-triphenylamine): synthesis by RAFT polymerization and melt-state self-assembly. Soft Matter, 2013, 9, 10146.	1.2	13
202	Hybrid inorganic–organic composite nanoparticles from crosslinkable polyfluorenes. Journal of Materials Chemistry C, 2013, 1, 3297.	2.7	13
203	Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Letters, 2019, 8, 1479-1483.	2.3	13
204	Effect of heterogeneous and homogeneous polymerisation on the structure of pNIPAm nanogels. Polymer Chemistry, 2021, 12, 6854-6864.	1.9	13
205	A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies. Soft Matter, 2013, 9, 3741.	1.2	12
206	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie, 2017, 129, 9306-9310.	1.6	12
207	Retaining individualities: the photodynamics of self-ordering porphyrin assemblies. Chemical Communications, 2016, 52, 1938-1941.	2.2	11
208	Facile synthesis of reversibly crosslinked poly(ionic liquid)-type gels: Recyclable supports for organocatalysis by N-heterocyclic carbenes. European Polymer Journal, 2018, 107, 82-88.	2.6	11
209	Size-controlled clustering of iron oxide nanoparticles within fluorescent nanogels using LCST-driven self-assembly. Journal of Materials Chemistry B, 2020, 8, 5330-5335.	2.9	11
210	Fluorescent nanoparticles from PEGylated polyfluorenes. Polymer Chemistry, 2013, 4, 1333.	1.9	10
211	The application of blocked isocyanate chemistry in the development of tunable thermoresponsive crosslinkers. Polymer Chemistry, 2017, 8, 7229-7239.	1.9	10
212	Catalytically Active <i>N</i> â€Heterocyclic Carbene Release from Singleâ€Chain Nanoparticles Following a Thermolysisâ€Driven Unfolding Strategy. Macromolecular Rapid Communications, 2019, 40, e1900071.	2.0	10
213	Precise Tuning of Polymeric Fiber Dimensions to Enhance the Mechanical Properties of Alginate Hydrogel Matrices. Polymers, 2021, 13, 2202.	2.0	10
214	Structural Determinants of the Stability of Enzymeâ€Responsive Polyion Complex Nanoparticles Targeting <i>Pseudomonas aeruginosa</i> 's Elastase. ChemNanoMat, 2018, 4, 807-814.	1.5	9
215	Rigidochromism by imide functionalisation of an aminomaleimide fluorophore. Chemical Science, 2021, 12, 10550-10557.	3.7	9
216	Uniform antibacterial cylindrical nanoparticles for enhancing the strength of nanocomposite hydrogels. Journal of Polymer Science, 2023, 61, 44-55.	2.0	8

#	Article	IF	CITATIONS
217	Polymer self-assembly: a web themed issue. Chemical Communications, 2014, 50, 13415-13416.	2.2	7
218	The effect of polymer nanostructure on diffusion of small molecules using tryptophan as a FRET probe. European Polymer Journal, 2015, 62, 380-385.	2.6	7
219	Dispersion of singleâ€walled carbon nanotubes using nucleobaseâ€containing poly(acrylamide) polymers. Journal of Polymer Science Part A, 2017, 55, 2611-2617.	2.5	7
220	Catalyst: Size Distribution in Self-Assembly Matters. CheM, 2019, 5, 487-490.	5.8	7
221	Precise control over supramolecular nanostructures <i>via</i> manipulation of H-bonding in ï€-amphiphiles. Nanoscale, 2021, 13, 20111-20118.	2.8	7
222	Log <i>P</i> _{oct} /SA Predicts the Thermoresponsive Behavior of P(DMA- <i>co</i> -RA) Statistical Copolymers. ACS Macro Letters, 2022, 11, 498-503.	2.3	7
223	How to better control polymer chemistry. Science, 2019, 363, 1394-1394.	6.0	6
224	Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers. Polymer Chemistry, 2021, 12, 105-112.	1.9	6
225	DNA–polymer conjugates via the graft-through polymerisation of native DNA in water. Chemical Communications, 2021, 57, 5466-5469.	2.2	6
226	Controlling the crystallinity and solubility of functional PCL with efficient post-polymerisation modification. Polymer Chemistry, 2021, 12, 1983-1990.	1.9	6
227	Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl) Tj ETQq1 1 0.784314 rgBT 2021, 1, 47-58.	/Overlock 1.7	10 Tf 50 347 6
228	Self-catalysed folding of single chain nanoparticles (SCNPs) by NHC-mediated intramolecular benzoin condensation. Polymer Chemistry, 2019, 10, 2282-2289.	1.9	5
229	Utilizing functionalized bromomaleimides for fluorogenic conjugation and PEGylation of enzymes. Polymer International, 2019, 68, 1247-1254.	1.6	5
230	Sustainable Polymers. Journal of the American Chemical Society, 2022, 144, 5197-5197.	6.6	5
231	Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl) Tj ETQq1 1 0.784	314.rgBT 1.9	/Overlock 10
232	The New Era of Self-Assembled Nanomaterials. Accounts of Chemical Research, 2022, 55, 1783-1784.	7.6	4
233	Dendrimers Clicked Together Divergently Volume 38, Number 13, June 28, 2005, pp 5436â^`5443 Macromolecules, 2006, 39, 900-900.	2.2	3
234	Thermally Switching On/Off the Hardening of Soaked Nanocomposite Materials. ACS Central Science, 2017, 3, 817-819.	5.3	3

#	Article	IF	CITATIONS
235	Controlled Assembly of Artificial Protein–Protein Complexes via DNA Duplex Formation. Bioconjugate Chemistry, 2015, 26, 427-434.	1.8	2
236	One-pot synthesis of micron-sized polybetaine particles; innovative use of supercritical carbon dioxide. Polymer Chemistry, 2017, 8, 4557-4564.	1.9	2
237	Synthesis of Monodisperse Cylindrical Nanoparticles via Crystallization-driven Self-assembly of Biodegradable Block Copolymers. Journal of Visualized Experiments, 2019, , .	0.2	2
238	Materials chemistry in the emerging field of synthetic biology. Journal of Materials Chemistry, 2011, 21, 18865.	6.7	1
239	Not lost in translation. Nature Chemistry, 2013, 5, 252-253.	6.6	1
240	DNA-Templated Chemistries for Sequence Controlled Oligomer Synthesis. ACS Symposium Series, 2014, , 71-84.	0.5	1
241	Microcalorimetry and fluorescence show stable peptide nucleic acid (PNA) duplexes in high organic content solvent mixtures. Organic and Biomolecular Chemistry, 2019, 17, 7874-7877.	1.5	1
242	Emerging investigators. Polymer Chemistry, 2011, 2, 269.	1.9	0
243	The pH induced vesicle to micelle morphology transition of a THPâ€protected polymer. Journal of Polymer Science Part A, 2014, 52, 3026-3031.	2.5	0
244	Ultrafast spectroscopic investigation of discrete co-assemblies of a Zn-porphyrin–polymer conjugate with a hexapyridyl template. Chemical Physics Letters, 2021, 777, 138736.	1.2	0