D R Englund

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2894643/d-r-englund-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,986 115 201 57 h-index g-index citations papers 18,736 6.85 287 11.2 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
201	High-speed programmable photonic circuits in a cryogenically compatible, visibleflear-infrared 200 mm CMOS architecture. <i>Nature Photonics</i> , 2022 , 16, 59-65	33.9	13
200	The potential and global outlook of integrated photonics for quantum technologies. <i>Nature Reviews Physics</i> , 2022 , 4, 194-208	23.6	20
199	2D materials-enabled optical modulators: From visible to terahertz spectral range. <i>Applied Physics Reviews</i> , 2022 , 9, 021302	17.3	2
198	Piezo-optomechanical cantilever modulators for VLSI visible photonics. <i>APL Photonics</i> , 2022 , 7, 051304	5.2	1
197	Universal linear optics by programmable multimode interference. <i>Optics Express</i> , 2021 , 29, 38257-3826	73.3	1
196	Experimental quantum speed-up in reinforcement learning agents. <i>Nature</i> , 2021 , 591, 229-233	50.4	23
195	Cavity-enhanced microwave readout of a solid-state spin sensor. <i>Nature Communications</i> , 2021 , 12, 135	7 17.4	8
194	Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces. <i>Optics Express</i> , 2021 , 29, 16469-16476	3.3	3
193	Josephson junction infrared single-photon detector. <i>Science</i> , 2021 , 372, 409-412	33.3	17
192	Ultrasensitive Calorimetric Measurements of the Electronic Heat Capacity of Graphene. <i>Nano Letters</i> , 2021 , 21, 5330-5337	11.5	1
191	Optically Heralded Entanglement of Superconducting Systems in Quantum Networks. <i>Physical Review Letters</i> , 2021 , 127, 040503	7.4	3
190	Giant enhancement of third-harmonic generation in graphene-metal heterostructures. <i>Nature Nanotechnology</i> , 2021 , 16, 318-324	28.7	9
189	. IEEE Journal of Solid-State Circuits, 2021 , 56, 1001-1014	5.5	8
188	A polarization encoded photon-to-spin interface. Npj Quantum Information, 2021, 7,	8.6	1
187	Imaging metasurfaces based on graphene-loaded slot antennas. <i>Optics Express</i> , 2021 , 29, 1076-1089	3.3	O
186	Room-temperature photonic logical qubits via second-order nonlinearities. <i>Nature Communications</i> , 2021 , 12, 191	17.4	6
185	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. <i>Nature Communications</i> , 2021 , 12, 871	17.4	10

184	Quantum Computer Systems for Scientific Discovery. PRX Quantum, 2021, 2,	6.1	36
183	Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. <i>PRX Quantum</i> , 2021 , 2,	6.1	46
182	Freely scalable and reconfigurable optical hardware for deep learning. Scientific Reports, 2021, 11, 3144	1 4.9	11
181	Quantum networks based on color centers in diamond. <i>Journal of Applied Physics</i> , 2021 , 130, 070901	2.5	13
180	A phononic interface between a superconducting quantum processor and quantum networked spin memories. <i>Npj Quantum Information</i> , 2021 , 7,	8.6	5
179	Investigation of the Stark Effect on a Centrosymmetric Quantum Emitter in Diamond. <i>Physical Review Letters</i> , 2021 , 127, 147402	7.4	2
178	Hardware error correction for programmable photonics. <i>Optica</i> , 2021 , 8, 1247	8.6	13
177	Group-III quantum defects in diamond are stable spin-1 color centers. <i>Physical Review B</i> , 2020 , 102,	3.3	12
176	Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors. <i>ACS Applied Materials & Discourse Materials & Di</i>	9.5	18
175	Low-Temperature Electron P honon Interaction of Quantum Emitters in Hexagonal Boron Nitride. <i>ACS Photonics</i> , 2020 , 7, 1410-1417	6.3	13
174	Clifford-group-restricted eavesdroppers in quantum key distribution. <i>Physical Review A</i> , 2020 , 101,	2.6	1
173	Experimental demonstration of memory-enhanced quantum communication. <i>Nature</i> , 2020 , 580, 60-64	50.4	132
172	Large-scale integration of artificial atoms in hybrid photonic circuits. <i>Nature</i> , 2020 , 583, 226-231	50.4	90
171	Effect of Spectral Diffusion on the Coherence Properties of a Single Quantum Emitter in Hexagonal Boron Nitride. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1330-1335	6.4	12
170	Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. <i>Physical Review Letters</i> , 2020 , 124, 023602	7.4	56
169	Heuristic recurrent algorithms for photonic Ising machines. <i>Nature Communications</i> , 2020 , 11, 249	17.4	31
168	Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors. <i>ACS Photonics</i> , 2020 , 7, 1135-1140	6.3	14
167	Photon-photon interactions in dynamically coupled cavities. <i>Physical Review A</i> , 2020 , 101,	2.6	12

166	Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities. <i>Physical Review Letters</i> , 2020 , 124, 160501	7.4	18
165	Advances in quantum cryptography. Advances in Optics and Photonics, 2020, 12, 1012	16.7	256
164	Strain tuning of the emission axis of quantum emitters in an atomically thin semiconductor. <i>Optica</i> , 2020 , 7, 580	8.6	4
163	Hybrid integration methods for on-chip quantum photonics. <i>Optica</i> , 2020 , 7, 291	8.6	77
162	Accelerating recurrent Ising machines in photonic integrated circuits. <i>Optica</i> , 2020 , 7, 551	8.6	31
161	Cryogenic operation of silicon photonic modulators based on the DC Kerr effect. <i>Optica</i> , 2020 , 7, 1385	8.6	6
160	Numerical finite-key analysis of quantum key distribution. Npj Quantum Information, 2020, 6,	8.6	4
159	Variational quantum unsampling on a quantum photonic processor. <i>Nature Physics</i> , 2020 , 16, 322-327	16.2	29
158	Graphene-based Josephson junction microwave bolometer. <i>Nature</i> , 2020 , 586, 42-46	50.4	32
157	Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. <i>Nature Communications</i> , 2020 , 11, 4872	17.4	19
156	Programmable photonic circuits. <i>Nature</i> , 2020 , 586, 207-216	50.4	151
155	Inference in artificial intelligence with deep optics and photonics. <i>Nature</i> , 2020 , 588, 39-47	50.4	114
154	Fundamental Thermal Noise Limits for Optical Microcavities. <i>Physical Review X</i> , 2020 , 10,	9.1	5
153	Dynamic Exciton Funneling by Local Strain Control in a Monolayer Semiconductor. <i>Nano Letters</i> , 2020 , 20, 6791-6797	11.5	27
152	Bright High-Purity Quantum Emitters in Aluminum Nitride Integrated Photonics. <i>ACS Photonics</i> , 2020 , 7, 2650-2657	6.3	15
151	Strong spinBrbit quenching via the product JahnIIeller effect in neutral group IV qubits in diamond. <i>Npj Quantum Materials</i> , 2020 , 5,	5	11
150	Integrated on Chip Platform with Quantum Emitters in Layered Materials. <i>Advanced Optical Materials</i> , 2019 , 7, 1901132	8.1	27
149	Advances in quantum light emission from 2D materials. <i>Nanophotonics</i> , 2019 , 8, 2017-2032	6.3	36

(2019-2019)

148	Quantum reference beacon-guided superresolution optical focusing in complex media. <i>Science</i> , 2019 , 363, 528-531	33.3	6
147	Carrier dynamics and spin-valley-layer effects in bilayer transition metal dichalcogenides. <i>Faraday Discussions</i> , 2019 , 214, 175-188	3.6	2
146	Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. <i>Science Advances</i> , 2019 , 5, eaau0823	14.3	94
145	Individual control and readout of qubits in a sub-diffraction volume. <i>Npj Quantum Information</i> , 2019 , 5,	8.6	9
144	Single photon detection by cavity-assisted all-optical gain. <i>Physical Review B</i> , 2019 , 99,	3.3	1
143	Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters. <i>Physical Review Letters</i> , 2019 , 122, 183602	7.4	18
142	Top-down fabrication of high-uniformity nanodiamonds by self-assembled block copolymer masks. <i>Scientific Reports</i> , 2019 , 9, 6914	4.9	7
141	Large-Scale Optical Neural Networks Based on Photoelectric Multiplication. <i>Physical Review X</i> , 2019 , 9,	9.1	72
140	Distributed Quantum Fiber Magnetometry. Laser and Photonics Reviews, 2019, 13, 1900075	8.3	16
139	Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing. <i>Physical Review B</i> , 2019 , 99,	3.3	42
138	2019,		3
137	Routing entanglement in the quantum internet. Npj Quantum Information, 2019, 5,	8.6	66
136	Percolation thresholds for photonic quantum computing. <i>Nature Communications</i> , 2019 , 10, 1070	17.4	14
135	Lead-related quantum emitters in diamond. <i>Physical Review B</i> , 2019 , 99,	3.3	57
134	Heterogeneous Integration of 2D Materials and Devices on a Si Platform 2019 , 43-84		2
133	A CMOS-integrated quantum sensor based on nitrogenNacancy centres. <i>Nature Electronics</i> , 2019 , 2, 284-289	28.4	44
132	Quantum optical neural networks. Npj Quantum Information, 2019, 5,	8.6	57
131	Trace-free counterfactual communication with a nanophotonic processor. <i>Npj Quantum Information</i> , 2019 , 5,	8.6	3

130	Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. <i>Nature Communications</i> , 2019 , 10, 4435	17.4	92
129	Quantum Materials with Atomic Precision: Artificial Atoms in Solids: Ab Initio Design, Control, and Integration of Single Photon Emitters in Artificial Quantum Materials. <i>Advanced Functional Materials</i> , 2019 , 29, 1904557	15.6	9
128	Large-alphabet encoding for higher-rate quantum key distribution. <i>Optics Express</i> , 2019 , 27, 17539-1754	19 .3	6
127	Design of high-speed phase-only spatial light modulators with two-dimensional tunable microcavity arrays. <i>Optics Express</i> , 2019 , 27, 30669-30680	3.3	14
126	Large-scale uniform optical focus array generation with a phase spatial light modulator. <i>Optics Letters</i> , 2019 , 44, 3178-3181	3	15
125	Scalable feedback control of single photon sources for photonic quantum technologies. <i>Optica</i> , 2019 , 6, 335	8.6	10
124	Variational Quantum Unsampling on a Programmable Nanophotonic Processor 2019 ,		1
123	Towards Large-Scale Photonic Neural-Network Accelerators 2019 ,		3
122	Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories. <i>Npj Quantum Information</i> , 2019 , 5,	8.6	12
121	Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. <i>Nature Communications</i> , 2019 , 10, 109	17.4	51
120	Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. <i>Science</i> , 2018 , 360, 291-295	33.3	179
119	Low-control and robust quantum refrigerator and applications with electronic spins in diamond. <i>Physical Review A</i> , 2018 , 97,	2.6	11
118	Metropolitan Quantum Key Distribution with Silicon Photonics. <i>Physical Review X</i> , 2018 , 8,	9.1	47
117	Photophysics of GaN single-photon emitters in the visible spectral range. <i>Physical Review B</i> , 2018 , 97,	3.3	22
116	Ultrafast Graphene Light Emitters. <i>Nano Letters</i> , 2018 , 18, 934-940	11.5	75
115	Quantum logic using correlated one-dimensional quantum walks. Npj Quantum Information, 2018, 4,	8.6	16
114	Material platforms for spin-based photonic quantum technologies. <i>Nature Reviews Materials</i> , 2018 , 3, 38-51	73.3	272
113	Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector. <i>Nano Letters</i> , 2018 , 18, 2787-2793	11.5	41

(2018-2018)

112	Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond. <i>Applied Physics Letters</i> , 2018 , 112, 141102	3.4	38
111	Quantum photonics model for nonclassical light generation using integrated nanoplasmonic cavity-emitter systems. <i>Physical Review A</i> , 2018 , 97,	2.6	7
110	Bright nanowire single photon source based on SiV centers in diamond. <i>Optics Express</i> , 2018 , 26, 80-89	3.3	27
109	Metal-dielectric antennas for efficient photon collection from diamond color centers. <i>Optics Express</i> , 2018 , 26, 3341-3352	3.3	18
108	Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. <i>Optics Express</i> , 2018 , 26, 11147-11160	3.3	65
107	High-performance flexible waveguide-integrated photodetectors. <i>Optica</i> , 2018 , 5, 44	8.6	34
106	On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries. <i>Micromachines</i> , 2018 , 9,	3.3	11
105	Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. <i>Applied Physics Letters</i> , 2018 , 112, 252406	3.4	44
104	Temporally and spectrally multiplexed single photon source using quantum feedback control for scalable photonic quantum technologies. <i>New Journal of Physics</i> , 2018 , 20, 063046	2.9	10
103	A scalable multi-photon coincidence detector based on superconducting nanowires. <i>Nature Nanotechnology</i> , 2018 , 13, 596-601	28.7	43
102	Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. <i>Nature Nanotechnology</i> , 2018 , 13, 797-801	28.7	42
101	Percolation Based Cluster State Generation by Photon-Mediated Entanglement 2018,		3
100	Lead-Related Quantum Emitters in Diamond 2018,		2
99	Linear programmable nanophotonic processors. <i>Optica</i> , 2018 , 5, 1623	8.6	113
98	Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry 2018 ,		3
97	Broadband loop gap resonator for nitrogen vacancy centers in diamond. <i>Review of Scientific Instruments</i> , 2018 , 89, 094705	1.7	16
96	Wide-Bandgap Integrated Photonic Circuits for Nonlinear Interactions and Interfacing with Quantum Memories 2018 ,		1
95	Compact mid-infrared graphene thermopile enabled by a nanopatterning technique of electrolyte gates. <i>New Journal of Physics</i> , 2018 , 20, 083050	2.9	3

94	Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride. <i>Advanced Materials</i> , 2017 , 29, 1605092	24	66
93	Active 2D materials for on-chip nanophotonics and quantum optics. <i>Nanophotonics</i> , 2017 , 6, 1329-1342	6.3	28
92	Quantum transport simulations in a programmable nanophotonic processor. <i>Nature Photonics</i> , 2017 , 11, 447-452	33.9	211
91	Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. <i>Nature Communications</i> , 2017 , 8, 15376	17.4	102
90	Deep learning with coherent nanophotonic circuits. <i>Nature Photonics</i> , 2017 , 11, 441-446	33.9	860
89	A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters. <i>APL Photonics</i> , 2017 , 2, 046103	5.2	10
88	Rate-distance tradeoff and resource costs for all-optical quantum repeaters. <i>Physical Review A</i> , 2017 , 95,	2.6	60
87	Fiber-Coupled Diamond Micro-Waveguides toward an Efficient Quantum Interface for Spin Defect Centers. <i>ACS Omega</i> , 2017 , 2, 7194-7202	3.9	6
86	Chalcogenide glass-on-graphene photonics. <i>Nature Photonics</i> , 2017 , 11, 798-805	33.9	125
85	Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. <i>Nature Communications</i> , 2017 , 8, 705	17.4	226
84	Quantum emission from atomic defects in wide-bandgap semiconductors 2017,		1
83	A MoTe-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nature Nanotechnology, 2017, 12, 1124-1129	28.7	229
82	Graphene-Based Josephson-Junction Single-Photon Detector. <i>Physical Review Applied</i> , 2017 , 8,	4.3	47
81	Deep learning with coherent nanophotonic circuits 2017,		10
80	Limitations of two-level emitters as nonlinearities in two-photon controlled-phase gates. <i>Physical Review A</i> , 2017 , 95,	2.6	10
79	Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. <i>Nano Letters</i> , 2017 , 17, 7394-7400	11.5	95
78	Polymer Photonic Crystal Nanocavity for Precision Strain Sensing. ACS Photonics, 2017, 4, 1591-1594	6.3	12
77	Rectangular photonic crystal nanobeam cavities in bulk diamond. <i>Applied Physics Letters</i> , 2017 , 111, 021	<u>1</u> 50β	39

(2016-2017)

76	High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond. <i>Physical Review A</i> , 2017 , 95,	2.6	46
75	Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities. <i>Physical Review Letters</i> , 2017 , 118, 223605	7.4	93
74	Integrated nanoplasmonic quantum interfaces for room-temperature single-photon sources. <i>Physical Review B</i> , 2017 , 96,	3.3	7
73	High-purity single photon emitter in aluminum nitride photonic integrated circuit 2017,		3
72	Programmable dispersion on a photonic integrated circuit for classical and quantum applications. <i>Optics Express</i> , 2017 , 25, 21275-21285	3.3	14
71	Chirped circular dielectric gratings for near-unity collection efficiency from quantum emitters in bulk diamond. <i>Optics Express</i> , 2017 , 25, 32420	3.3	14
70	Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. <i>Optical Materials Express</i> , 2017 , 7, 1514	2.6	18
69	Programmable Nanophotonics for Quantum Simulation and Machine Learning 2017 ,		1
68	Optical Network Switch for Dynamically Reconfigurable Single- and Multi-cast Topologies 2017,		1
67	High-dimensional unitary transformations and boson sampling on temporal modes using dispersive optics. <i>Physical Review A</i> , 2016 , 93,	2.6	11
66	Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. <i>ACS Nano</i> , 2016 , 10, 7331-8	16.7	285
65	Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond. <i>Nano Letters</i> , 2016 , 16, 4982-90	11.5	34
64	Large-scale quantum photonic circuits in silicon. <i>Nanophotonics</i> , 2016 , 5, 456-468	6.3	75
63	Superconducting Nanowire Single-Photon Detector on Aluminum Nitride 2016 ,		8
62	Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond. <i>New Journal of Physics</i> , 2016 , 18, 123023	2.9	37
61	AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range. <i>Optics Express</i> , 2016 , 24, 25415-25423	3.3	37
60	Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling 2016 ,		1
59	Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. <i>APL Photonics</i> , 2016 , 1, 020801	5.2	23

58	Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3938-43	11.5	50
57	Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber. <i>Light: Science and Applications</i> , 2016 , 5, e16032	16.7	46
56	Solid-state single-photon emitters. <i>Nature Photonics</i> , 2016 , 10, 631-641	33.9	804
55	Quantum nanophotonics in diamond [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, B65	1.7	136
54	Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields. <i>Physical Review A</i> , 2016 , 94,	2.6	15
53	Bright and photostable single-photon emitter in silicon carbide. <i>Optica</i> , 2016 , 3, 768	8.6	53
52	Finite-key analysis of high-dimensional time\(\text{B}\)nergy entanglement-based quantum key distribution. Quantum Information Processing, 2015, 14, 1005-1015	1.6	11
51	On-chip detection of non-classical light by scalable integration of single-photon detectors. <i>Nature Communications</i> , 2015 , 6, 5873	17.4	176
50	Nanofabrication on unconventional substrates using transferred hard masks. <i>Scientific Reports</i> , 2015 , 5, 7802	4.9	43
49	High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. <i>Nature Communications</i> , 2015 , 6, 7762	17.4	49
48	Practical high-dimensional quantum key distribution with decoy states. <i>Physical Review A</i> , 2015 , 91,	2.6	28
47	Photon-efficient quantum key distribution using timeEnergy entanglement with high-dimensional encoding. <i>New Journal of Physics</i> , 2015 , 17, 022002	2.9	109
46	Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. <i>Nano Letters</i> , 2015 , 15, 1493-7	11.5	112
45	One-dimensional photonic crystal cavities in single-crystal diamond. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2015 , 15, 130-136	2.6	17
44	Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. <i>Nature Physics</i> , 2015 , 11, 393-397	16.2	150
43	High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. <i>Nano Letters</i> , 2015 , 15, 7288-93	11.5	140
42	Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. <i>ACS Nano</i> , 2015 , 9, 10612-20	16.7	334
41	High-fidelity quantum state evolution in imperfect photonic integrated circuits. <i>Physical Review A</i> , 2015 , 92,	2.6	45

(2013-2015)

40	Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit. <i>Physical Review X</i> , 2015 , 5,	9.1	57
39	Quantum Random Walks in a Programmable Nanophotonic Processor 2015 ,		2
38	High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. <i>Nano Letters</i> , 2015 , 15, 2001-5	11.5	111
37	Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks. <i>Nano Letters</i> , 2015 , 15, 1751-8	11.5	33
36	Coherent spin control of a nanocavity-enhanced qubit in diamond. <i>Nature Communications</i> , 2015 , 6, 617	3 17.4	119
35	Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. <i>Nano Letters</i> , 2014 , 14, 32-6	11.5	56
34	Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors. <i>ACS Photonics</i> , 2014 , 1, 768-774	6.3	8o
33	High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity. <i>Applied Physics Letters</i> , 2014 , 104, 241108	3.4	32
32	Controlled LightMatter Interaction in Graphene Electrooptic Devices Using Nanophotonic Cavities and Waveguides. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 95-105	3.8	16
31	Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems. <i>Physical Review X</i> , 2014 , 4,	9.1	85
30	Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks. <i>Applied Physics Letters</i> , 2014 , 105, 211101	3.4	31
29	Efficient, compact and low loss thermo-optic phase shifter in silicon. <i>Optics Express</i> , 2014 , 22, 10487-93	3.3	174
28	Surface Structure of Aerobically Oxidized Diamond Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 26695-26702	3.8	44
27	Entanglement-based quantum communication secured by nonlocal dispersion cancellation. <i>Physical Review A</i> , 2014 , 90,	2.6	39
26	Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. <i>Physical Review Letters</i> , 2014 , 112, 120506	7.4	52
25	On-chip graphene optoelectronic devices for high-speed modulation and photodetection 2014 ,		1
24	High-dimensional quantum key distribution using dispersive optics. <i>Physical Review A</i> , 2013 , 87,	2.6	103
23	Enhanced photodetection in graphene-integrated photonic crystal cavity. <i>Applied Physics Letters</i> , 2013 , 103, 241109	3.4	61

22	Chip-integrated ultrafast graphene photodetector with high responsivity. <i>Nature Photonics</i> , 2013 , 7, 883-887	33.9	768
21	High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. <i>Nano Letters</i> , 2013 , 13, 691-6	11.5	151
20	Timekeeping with electron spin states in diamond. <i>Physical Review A</i> , 2013 , 87,	2.6	43
19	Planar fabrication of arrays of ion-exfoliated single-crystal-diamond membranes with nitrogen-vacancy color centers. <i>Optical Materials</i> , 2013 , 35, 361-365	3.3	13
18	Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. <i>Nano Letters</i> , 2013 , 13, 2073-7	11.5	68
17	Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2013 , 31, 06FF01	1.3	12
16	Controlling the spontaneous emission rate of monolayer MoS in a photonic crystal nanocavity. <i>Applied Physics Letters</i> , 2013 , 103, 181119	3.4	155
15	Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals. <i>Scientific Reports</i> , 2013 , 3, 2145	4.9	20
14	Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. <i>Physical Review Letters</i> , 2012 , 108, 093604	7.4	131
13	Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. <i>Nano Letters</i> , 2012 , 12, 5626-31	11.5	204
12	A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array. <i>Applied Physics Letters</i> , 2012 , 100, 231104	3.4	48
11	Nonlinear temporal dynamics of a strongly coupled quantum-dotBavity system. <i>Physical Review A</i> , 2012 , 85,	2.6	38
10	Long-lived NVEpin coherence in high-purity diamond membranes. New Journal of Physics, 2012, 14, 093	80 <u>0</u> .4 ₉	28
9	Efficient generation of single and entangled photons on a silicon photonic integrated chip. <i>Physical Review A</i> , 2011 , 84,	2.6	43
8	Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. <i>Nano Letters</i> , 2010 , 10, 3922-6	11.5	267
7	Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. <i>Nature Physics</i> , 2008 , 4, 859-863	16.2	403
6	Controlled phase shifts with a single quantum dot. <i>Science</i> , 2008 , 320, 769-72	33.3	325
5	Local tuning of photonic crystal cavities using chalcogenide glasses. <i>Applied Physics Letters</i> , 2008 , 92, 043123	3.4	70

LIST OF PUBLICATIONS

4	Controlling cavity reflectivity with a single quantum dot. <i>Nature</i> , 2007 , 450, 857-61	50.4	459
3	Ultrafast photonic crystal nanocavity laser. <i>Nature Physics</i> , 2006 , 2, 484-488	16.2	402
2	Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. <i>Physical Review Letters</i> , 2005 , 95, 013904	7.4	684
1	A vertically-loaded diamond microdisk resonator spin-photon interface. <i>Optics Express</i> ,	3.3	1