

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894422/publications.pdf Version: 2024-02-01

	9234	6282
26,487	74	158
citations	h-index	g-index
212	212	21879
docs citations	times ranked	citing authors
	26,487 citations 212 docs citations	26,487 citations 74 h-index 212 docs citations 212 times ranked

ΤιλΝ-νι

#	Article	IF	CITATIONS
1	Metal–Organic Framework Derived Hybrid Co ₃ O ₄ -Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 2014, 136, 13925-13931.	6.6	1,744
2	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	5.8	1,496
3	Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H ₂ production. Energy and Environmental Science, 2015, 8, 3708-3717.	15.6	1,146

4 Efficient and Stable Bifunctional Electrocatalysts Ni/Ni<i><sub></i>M<i><sub></i>M<i><sub></i>(M =) Tj ETQq0 0.0 rgBT /Qyerlock 10

5	Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Threeâ€Dimensional Porous Composites as Highâ€Performance Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2014, 53, 7281-7285.	7.2	737
6	Phosphorusâ€Doped Graphitic Carbon Nitrides Grown Inâ€Situ on Carbonâ€Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angewandte Chemie - International Edition, 2015, 54, 4646-4650.	7.2	722
7	ZnCo ₂ O ₄ Quantum Dots Anchored on Nitrogenâ€Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts. Advanced Materials, 2016, 28, 3777-3784.	11.1	692
8	Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All‣olid‣tate Zinc–Air Battery. Advanced Energy Materials, 2017, 7, 1602420.	10.2	692
9	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017, 56, 1324-1328.	7.2	648
10	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 1138-1142.	7.2	597
11	The Role of Polarization in Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 10061-10073.	7.2	590
12	Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42, 3977-4003.	18.7	530
13	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 5359-5364.	7.2	500
14	Threeâ€inâ€One Oxygen Vacancies: Whole Visibleâ€Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2019, 58, 3880-3884.	7.2	483
15	Protonâ€Functionalized Twoâ€Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metalâ€∤Labelâ€Free Biosensing Platform. Small, 2014, 10, 2382-2389.	5.2	441
16	Piezocatalysis and Piezoâ€Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials, 2020, 30, 2005158.	7.8	435
17	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8407-8411.	7.2	421
18	Dual Singleâ€Atomic Niâ€N ₄ and Feâ€N ₄ Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003134.	11.1	376

#	Article	IF	CITATIONS
19	Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10, 2149.	5.8	363
20	Thicknessâ€Dependent Facet Junction Control of Layered BiOIO ₃ Single Crystals for Highly Efficient CO ₂ Photoreduction. Advanced Functional Materials, 2018, 28, 1804284.	7.8	358
21	Insideâ€andâ€Out Semiconductor Engineering for CO ₂ Photoreduction: From Recent Advances to New Trends. Small Structures, 2021, 2, 2000061.	6.9	346
22	Surfaceâ€Halogenationâ€Induced Atomicâ€Site Activation and Local Charge Separation for Superb CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900546.	11.1	343
23	Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016, 19, 265-273.	8.3	268
24	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702222.	10.2	243
25	Oxygen Vacant Semiconductor Photocatalysts. Advanced Functional Materials, 2021, 31, 2100919.	7.8	242
26	Unprecedented Eighteenâ€Faceted BiOCl with a Ternary Facet Junction Boosting Cascade Charge Flow and Photoâ€redox. Angewandte Chemie - International Edition, 2019, 58, 9517-9521.	7.2	230
27	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	5.2	227
28	Coupling Piezocatalysis and Photocatalysis in Bi ₄ NbO ₈ X (X = Cl, Br) Polar Single Crystals. Advanced Functional Materials, 2020, 30, 1908168.	7.8	225
29	Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	225
30	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. Advanced Materials, 2017, 29, 1604607.	11.1	224
31	Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solarâ€Đriven CO ₂ Reduction Application. Advanced Functional Materials, 2021, 31, 2008008.	7.8	221
32	Photocatalysis Enhanced by External Fields. Angewandte Chemie - International Edition, 2021, 60, 16309-16328.	7.2	218
33	High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Applied Catalysis B: Environmental, 2021, 293, 120225.	10.8	206
34	S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. Science Bulletin, 2018, 63, 1130-1140.	4.3	202
35	2D Graphitic Carbon Nitride for Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2102540.	7.8	190
36	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie - International Edition, 2021, 60, 12554-12559.	7.2	188

#	Article	IF	CITATIONS
37	A Porous Perchlorateâ€Doped Polypyrrole Nanocoating on Nickel Nanotube Arrays for Stable Wideâ€Potentialâ€Window Supercapacitors. Advanced Materials, 2016, 28, 7680-7687.	11.1	180
38	Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nature Communications, 2021, 12, 4594.	5.8	180
39	Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small, 2016, 12, 6735-6744.	5.2	172
40	Recent Progress of Vacancy Engineering for Electrochemical Energy Conversion Related Applications. Advanced Functional Materials, 2021, 31, 2009070.	7.8	166
41	Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion. Advanced Functional Materials, 2020, 30, 1905665.	7.8	159
42	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 3222-3227.	7.2	157
43	Z-Scheme g-C ₃ N ₄ /Bi ₄ NbO ₈ Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 16219-16227.	3.2	156
44	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	10.2	156
45	Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. Journal of Materials Chemistry, 2011, 21, 16001.	6.7	146
46	K ⁺ pre-intercalated manganese dioxide with enhanced Zn ²⁺ diffusion for high rate and durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20806-20812.	5.2	145
47	Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy, 2019, 56, 840-850.	8.2	144
48	Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorganic Chemistry Frontiers, 2014, 1, 360-383.	3.0	134
49	Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction. Nano Energy, 2020, 75, 104959.	8.2	132
50	Corrosion Engineering on Iron Foam toward Efficiently Electrocatalytic Overall Water Splitting Powered by Sustainable Energy. Advanced Functional Materials, 2021, 31, 2010437.	7.8	125
51	Thinâ€Layered Photocatalysts. Advanced Functional Materials, 2020, 30, 1910005.	7.8	117
52	Gadoliniumâ€Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903833.	10.2	114
53	Zinc–nickel–cobalt ternary hydroxide nanoarrays for high-performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 11826-11835.	5.2	112
54	Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment. Small, 2017, 13, 1602592.	5.2	111

#	Article	IF	CITATIONS
55	Singleâ€Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes. Angewandte Chemie - International Edition, 2019, 58, 14599-14604.	7.2	111
56	Titania–phosphonate hybrid porous materials: preparation, photocatalytic activity and heavy metal ion adsorption. Journal of Materials Chemistry, 2008, 18, 2003.	6.7	109
57	Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Applied Catalysis B: Environmental, 2021, 297, 120395.	10.8	109
58	In Situ Electronic Redistribution Tuning of NiCo ₂ S ₄ Nanosheets for Enhanced Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	108
59	Defect engineering in metal sulfides for energy conversion and storage. Coordination Chemistry Reviews, 2021, 448, 214147.	9.5	107
60	Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. Small, 2022, 18, e2105830.	5.2	103
61	Metal Phosphonate Hybrid Mesostructures: Environmentally Friendly Multifunctional Materials for Clean Energy and Other Applications. ChemSusChem, 2011, 4, 1407-1419.	3.6	101
62	Directing Charge Transfer in a Chemicalâ€Bonded BaTiO ₃ @ReS ₂ Schottky Heterojunction for Piezoelectric Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2202508.	11.1	98
63	Ordered Macroporous Titanium Phosphonate Materials:  Synthesis, Photocatalytic Activity, and Heavy Metal Ion Adsorption. Journal of Physical Chemistry C, 2008, 112, 3090-3096.	1.5	96
64	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie, 2016, 128, 1150-1154.	1.6	96
65	Electron Redistributed Sâ€Doped Nickel Iron Phosphides Derived from Oneâ€Step Phosphatization of MOFs for Significantly Boosting Electrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	93
66	Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction. Applied Catalysis B: Environmental, 2019, 253, 196-205.	10.8	91
67	Hierarchical Meso-/Macroporous Aluminum Phosphonate Hybrid Materials as Multifunctional Adsorbents. Journal of Physical Chemistry C, 2009, 113, 12854-12862.	1.5	90
68	Proton Insertion Promoted a Polyfurfural/MnO ₂ Nanocomposite Cathode for a Rechargeable Aqueous Zn–MnO ₂ Battery. ACS Applied Materials & Interfaces, 2020, 12, 36072-36081.	4.0	89
69	Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. Journal of Materials Chemistry A, 2020, 8, 15875-15883.	5.2	88
70	Acid–Base Bifunctional Periodic Mesoporous Metal Phosphonates for Synergistically and Heterogeneously Catalyzing CO2 Conversion. ACS Catalysis, 2014, 4, 3847-3855.	5.5	84
71	Isolating Single and Few Atoms for Enhanced Catalysis. Advanced Materials, 2022, 34, e2201796.	11.1	84
72	Aqueous Supercapacitor with Ultrahigh Voltage Window Beyond 2.0 Volt. Small Structures, 2020, 1, 2000020.	6.9	83

#	Article	IF	CITATIONS
73	Sonochemistry-assisted synthesis and optical properties of mesoporous ZnS nanomaterials. Journal of Materials Chemistry A, 2014, 2, 1093-1101.	5.2	81
74	Lowering reaction temperature: Electrochemical ammonia synthesis by coupling various electrolytes and catalysts. Journal of Energy Chemistry, 2017, 26, 1107-1116.	7.1	81
75	Sulfurated Metal–Organic Framework-Derived Nanocomposites for Efficient Bifunctional Oxygen Electrocatalysis and Rechargeable Zn–Air Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 9226-9234.	3.2	79
76	Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction. Nano Energy, 2021, 80, 105504.	8.2	78
77	Ordered Mesoporous Metal–Organic Frameworks Consisting of Metal Disulfonates. Chemistry of Materials, 2012, 24, 2253-2255.	3.2	75
78	<i>In situ</i> identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray. Materials Horizons, 2021, 8, 556-564.	6.4	75
79	Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Applied Catalysis B: Environmental, 2021, 284, 119709.	10.8	74
80	Manipulating the Coordination Chemistry of Ruï£įN(O)ï£įC Moieties for Fast Alkaline Hydrogen Evolution Kinetics. Advanced Functional Materials, 2021, 31, 2100698.	7.8	74
81	Pyroelectric catalysis. Nano Energy, 2020, 78, 105371.	8.2	73
82	Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Applied Surface Science, 2019, 470, 1101-1110.	3.1	72
83	Hydrangeaâ€Like Mesoâ€/Macroporous ZnOâ€CeO ₂ Binary Oxide Materials: Synthesis, Photocatalysis and CO Oxidation. European Journal of Inorganic Chemistry, 2010, 2010, 716-724.	1.0	71
84	Hierarchically meso-/macroporous titanium tetraphosphonate materials: Synthesis, photocatalytic activity and heavy metal ion adsorption. Microporous and Mesoporous Materials, 2009, 123, 234-242.	2.2	70
85	Main group metal elements for ambient-condition electrochemical nitrogen reduction. Journal of Energy Chemistry, 2021, 62, 51-70.	7.1	70
86	Enhancing the Selectivity of H ₂ O ₂ Electrogeneration by Steric Hindrance Effect. ACS Applied Materials & Interfaces, 2018, 10, 42534-42541.	4.0	69
87	An electro-activated bimetallic zinc-nickel hydroxide cathode for supercapacitor with super-long 140,000 cycle durability. Nano Energy, 2021, 82, 105727.	8.2	68
88	Ordered, Mesoporous Metal Phosphonate Materials with Microporous Crystalline Walls for Selective Separation Techniques. Small, 2011, 7, 1827-1837.	5.2	67
89	Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2020, 568, 139-147.	5.0	65
90	Periodic mesoporous titanium phosphonate hybrid materials. Journal of Materials Chemistry, 2010, 20, 7406.	6.7	64

#	Article	IF	CITATIONS
91	Surface engineered 2D materials for photocatalysis. Chemical Communications, 2020, 56, 11000-11013.	2.2	61
92	High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New Journal of Chemistry, 2010, 34, 1209.	1.4	60
93	Hierarchically Structured Squama-like Cerium-Doped Titania: Synthesis, Photoactivity, and Catalytic CO Oxidation. Journal of Physical Chemistry C, 2009, 113, 16658-16667.	1.5	59
94	Cubic Mesoporous Titanium Phosphonates with Multifunctionality. Chemistry - A European Journal, 2010, 16, 8487-8494.	1.7	59
95	Unsaturated p-Metal-Based Metal–Organic Frameworks for Selective Nitrogen Reduction under Ambient Conditions. ACS Applied Materials & Interfaces, 2020, 12, 44830-44839.	4.0	58
96	Solar Energy Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	58
97	Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 4735-4739.	5.2	57
98	Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chemical Communications, 2010, 46, 2325.	2.2	56
99	Rational Design of Coordination Bond Connected Metal Organic Frameworks/MXene Hybrids for Efficient Solar Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	56
100	Ruthenium(<scp>iii</scp>) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 25433-25440.	5.2	55
101	Predicting the hydrogen release ability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:msub><mml:mrow><mml:mtext>LiBH</mml:mtext></mml:mrow><mml:m mixtures by ensemble machine learning. Energy Storage Materials, 2020, 27, 466-477.</mml:m </mml:msub></mml:mrow></mml:math 	row ^{9,5} <mr< td=""><td>nl:mn55>4</td></mr<>	nl:mn55>4
102	Hierarchical meso–macroporous titania-supported CuO nanocatalysts: preparation, characterization and catalytic CO oxidation. Journal of Materials Science, 2009, 44, 6717-6726.	1.7	54
103	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 12553-12557.	7.2	53
104	Core@Satellite Janus Nanomotors with pHâ€Responsive Multiâ€phoretic Propulsion. Angewandte Chemie - International Edition, 2020, 59, 14368-14372.	7.2	52
105	Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C ₄ Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie - International Edition, 2021, 60, 2541-2547.	7.2	51
106	Bifunctional Hydrogen Production and Storage on 0D–1D Heterojunction of Cd _{0.5} Zn _{0.5} S@Halloysites. Advanced Functional Materials, 2019, 29, 1903825.	7.8	50
107	Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems. Catalysts, 2017, 7, 373.	1.6	48
108	Mesoporous Cerium Phosphonate Nanostructured Hybrid Spheres as Label-Free Hg ²⁺ Fluorescent Probes. ACS Applied Materials & Interfaces, 2014, 6, 16344-16351.	4.0	47

#	Article	IF	CITATIONS
109	Threeâ€inâ€One Oxygen Vacancies: Whole Visibleâ€Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO ₂ Photoreduction. Angewandte Chemie, 2019, 131, 3920-3924.	1.6	45
110	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie, 2017, 129, 8527-8531.	1.6	44
111	A small change in the local atomic environment for a big improvement in single-atom catalysis. Journal of Materials Chemistry A, 2021, 9, 4184-4192.	5.2	44
112	Nanostructured Titania–Diphosphonate Hybrid Materials with a Porous Hierarchy. European Journal of Inorganic Chemistry, 2008, 2008, 2721-2726.	1.0	43
113	Defective Bimetallic Selenides for Selective CO ₂ Electroreduction to CO. Advanced Materials, 2022, 34, e2106354.	11.1	43
114	Synthesis of Highly Active and Stable Spinelâ€Type Oxygen Evolution Electrocatalysts by a Rapid Inorganic Selfâ€Templating Method. Chemistry - A European Journal, 2014, 20, 12669-12676.	1.7	42
115	Phosphorus and nitrogen co-doped titania photocatalysts with a hierarchical meso-/macroporous structure. Journal of Materials Science, 2009, 44, 6754-6763.	1.7	41
116	Identification of the Charge Transfer Channel in Cobalt Encapsulated Hollow Nitrogenâ€Doped Carbon Matrix@CdS Heterostructure for Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2101315.	5.2	41
117	Self-Supported Amorphous-Edge Nickel Sulfide Nanobrush for Excellent Energy Storage. Electrochimica Acta, 2017, 255, 153-159.	2.6	40
118	Highly dispersed photoactive zinc oxide nanoparticles on mesoporous phosphonated titania hybrid. Applied Catalysis B: Environmental, 2014, 156-157, 44-52.	10.8	39
119	Singleâ€Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes. Angewandte Chemie, 2019, 131, 14741-14746.	1.6	39
120	Selfâ€ S upporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	7.8	39
121	Unique Li ₄ Ti ₅ O ₁₂ /TiO ₂ multilayer arrays with advanced surface lithium storage capability. Journal of Materials Chemistry A, 2018, 6, 22053-22061.	5.2	38
122	Synthesis and characterization of carbon-modified titania photocatalysts with a hierarchical meso-/macroporous structure. Chemical Engineering Journal, 2010, 160, 370-377.	6.6	37
123	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie, 2021, 133, 12662-12667.	1.6	36
124	Periodic mesoporous titanium phosphonate spheres for high dispersion of CuO nanoparticles. Dalton Transactions, 2010, 39, 9570.	1.6	35
125	Titania–silica–phosphonate triconstituent hybrid mesoporous materials as adsorbents in gas and liquid phases. Chemical Engineering Journal, 2011, 166, 1144-1151.	6.6	35
126	Ultrathin 1T-MoS ₂ Nanoplates Induced by Quaternary Ammonium-Type Ionic Liquids on Polypyrrole/Graphene Oxide Nanosheets and Its Irreversible Crystal Phase Transition During Electrocatalytic Nitrogen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 25189-25199.	4.0	35

#	Article	IF	CITATIONS
127	Chemical impact of catholytes on Bacillus subtilis-catalysed microbial fuel cell performance for degrading 2,4-dichlorophenol. Chemical Engineering Journal, 2016, 301, 103-114.	6.6	34
128	Nitrogen-promoted molybdenum dioxide nanosheets for electrochemical hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 12532-12540.	5.2	34
129	Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. Journal of Materials Chemistry A, 2019, 7, 23941-23948.	5.2	34
130	Synthesis of ultra-large mesoporous carbons from triblock copolymers and phloroglucinol/formaldehyde polymer. Carbon, 2010, 48, 2660-2664.	5.4	33
131	Amorphous carbon-linked TiO2/carbon nanotube film composite with enhanced photocatalytic performance: The effect of interface contact and hydrophilicity. Chinese Chemical Letters, 2021, 32, 2151-2154.	4.8	33
132	Integrating Covalent Organic Framework with Transition Metal Phosphide for Nobleâ€Metalâ€Free Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. Small, 2022, 18, .	5.2	33
133	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
134	Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Advances, 2012, 2, 2790.	1.7	32
135	Pyrite-Type CoS2 Nanoparticles Supported on Nitrogen-Doped Graphene for Enhanced Water Splitting. Frontiers in Chemistry, 2018, 6, 569.	1.8	32
136	Encapsulated hollow Na2Ti3O7 spheres in reduced graphene oxide films for flexible sodium-ion batteries. Electrochimica Acta, 2018, 284, 287-293.	2.6	32
137	Strategies for Optimizing the Photocatalytic Waterâ€5plitting Performance of Metal–Organic Frameworkâ€Based Materials. Small Science, 2021, 1, 2100060.	5.8	31
138	Redox-etching induced porous carbon cloth with pseudocapacitive oxygenic groups for flexible symmetric supercapacitor. Journal of Energy Chemistry, 2022, 64, 136-143.	7.1	31
139	Ag quantum dots promoted Li ₄ Ti ₅ O ₁₂ /TiO ₂ nanosheets with ultrahigh reversible capacity and super rate performance for power lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 16886-16895.	5.2	30
140	Aloe-emodin Attenuates Staphylococcus aureus Pathogenicity by Interfering With the Oligomerization of α-Toxin. Frontiers in Cellular and Infection Microbiology, 2019, 9, 157.	1.8	30
141	Host–Guest Recognition on 2D Graphitic Carbon Nitride for Nanosensing. Advanced Materials Interfaces, 2019, 6, 1901429.	1.9	30
142	Highly efficient g-C3N4 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to liquid fuel l³-valerolactone. Renewable Energy, 2021, 177, 652-662.	4.3	30
143	Direct synthesis of P/O-enriched pitch-based carbon microspheres from a coordinated emulsification and pre-oxidation towards high-rate potassium-ion batteries. Carbon, 2022, 194, 176-184.	5.4	30
144	Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation. Journal of Natural Gas Chemistry, 2011, 20, 669-676.	1.8	29

#	Article	IF	CITATIONS
145	Mesoporous phosphonate–TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release. Analyst, The, 2013, 138, 1084.	1.7	29
146	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 3276-3281.	1.6	29
147	Doping mechanism directed graphene applications for energy conversion and storage. Journal of Materials Chemistry A, 2021, 9, 7366-7395.	5.2	29
148	High selectivity for metal ion adsorption: from mesoporous phosphonated titanias to meso-/macroporous titanium phosphonates. Journal of Materials Science, 2009, 44, 6775-6785.	1.7	28
149	Carbon Dots as an Indicator of Acid–Base Titration and a Fluorescent Probe for Endoplasm Reticulum Imaging. ACS Applied Bio Materials, 2021, 4, 3623-3629.	2.3	28
150	Versatile template-free construction of hollow nanostructured CeO ₂ induced by functionalized carbon materials. Journal of Materials Chemistry A, 2019, 7, 12008-12017.	5.2	27
151	BiOCl-based photocathode for photocatalytic fuel cell. Applied Surface Science, 2020, 506, 144949.	3.1	27
152	Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge. Journal of Energy Chemistry, 2021, 52, 20-27.	7.1	27
153	Hexagonal Mesoporous Titanium Tetrasulfonates with Large Conjugated Hybrid Framework for Photoelectric Conversion. ACS Applied Materials & Interfaces, 2010, 2, 3563-3571.	4.0	26
154	Increasing the H+ exchange capacity of porous titanium phosphonate materials by protecting defective P–OH groups. Chemical Communications, 2011, 47, 6015.	2.2	26
155	Surface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation. ACS Catalysis, 2020, 10, 8742-8750.	5.5	26
156	Surface and interface chemistry in metalâ€free electrocatalysts for electrochemical CO ₂ reduction. SmartMat, 2022, 3, 5-34.	6.4	25
157	Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores. Nanoscale, 2011, 3, 1690.	2.8	24
158	Physicochemical and functional properties of micronized jincheng orange by-products (<i>Citrus) Tj ETQq0 0 0 rg of Food Sciences and Nutrition, 2014, 65, 565-572.</i>	BT /Overlo 1.3	ock 10 Tf 50 24
159	Electrical and Structural Dual Function of Oxygen Vacancies for Promoting Electrochemical Capacitance in Tungsten Oxide. Small, 2020, 16, e2004709.	5.2	24
160	2D Metalâ€Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Advanced Energy Materials, 2021, 11, 2101202.	10.2	24
161	N, P-doped carbon supported ruthenium doped Rhenium phosphide with porous nanostructure for hydrogen evolution reaction using sustainable energies. Journal of Colloid and Interface Science, 2022, 606, 1874-1881.	5.0	24
162	Surface-defective FeS2 for electrochemical NH3 production under ambient conditions. Nano Materials Science, 2020, 2, 132-139.	3.9	23

#	Article	IF	CITATIONS
163	lrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weak‣ightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 26790-26797.	7.2	23
164	Defect Engineering for Photocatalysis: From Ternary to Perovskite Oxynitrides. ChemNanoMat, 2020, 6, 708-719.	1.5	23
165	Molecular tuning of sulfur doped quinoline oligomer derived soft carbon for superior potassium storage. Carbon, 2022, 191, 10-18.	5.4	23
166	Organicâ€Additiveâ€Assisted Synthesis of Hierarchically Meso″Macroporous Titanium Phosphonates. European Journal of Inorganic Chemistry, 2010, 2010, 2941-2948.	1.0	22
167	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 12683-12687.	1.6	22
168	All-in-one polarized Cd/CdS/halloysite ferroelectric hybrid for exceptional photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 17936-17944.	5.2	22
169	Synthesis of Hierarchically Meso-/Macroporous Titanium Tetraphosphonate Materials with Large Adsorption Capacity of Heavy Metal Ions. Chemistry Letters, 2008, 37, 746-747.	0.7	19
170	Adsorption of Methylene Blue from Aqueous Solution by Periodic Mesoporous Titanium Phosphonate Materials. Adsorption Science and Technology, 2013, 31, 535-548.	1.5	18
171	A lanthanide-based magnetic nanosensor as an erasable and visible platform for multi-color point-of-care detection of multiple targets and the potential application by smartphone. Journal of Materials Chemistry B, 2019, 7, 734-743.	2.9	18
172	Designing Nanostructured Metal-Based CO ₂ Reduction Electrocatalysts. Journal of Nanoscience and Nanotechnology, 2019, 19, 3079-3096.	0.9	18
173	Threeâ€Inâ€One Alkylamineâ€Tuned MoO <i>_x</i> for Labâ€Scale to Realâ€Life Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	18
174	Room-temperature photocatalytic methanol fuel cell based on one-dimension semiconductor photoanode: Intrinsic mechanism of photogenerated charge separation. Electrochimica Acta, 2019, 318, 413-421.	2.6	17
175	Two layered Bi-based borate photocatalysts MBi2B2O7 (M = Ca, Sr) for photocatalytic degradation and oxygen activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 123994.	2.3	16
176	Flashâ€Induced Ultrafast Production of Graphene/MnO with Extraordinary Supercapacitance. Small Methods, 2021, 5, e2100225.	4.6	15
177	Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis. Angewandte Chemie, 2022, 134, .	1.6	15
178	Plasmonic Au nanoparticle sandwiched CuBi ₂ O ₄ /Sb ₂ S ₃ photocathode with multi-mediated electron transfer for efficient solar water splitting. Sustainable Energy and Fuels, 2022, 6, 3961-3974.	2.5	15
179	Pickering emulsion-embedded hierarchical solid-liquid hydrogel spheres for static and flow photocatalysis. Journal of Colloid and Interface Science, 2021, 589, 587-596.	5.0	13
180	Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon, 2022, 195, 199-206.	5.4	13

#	Article	IF	CITATIONS
181	Hierarchical Structures from Inorganic Nanocrystal Self-Assembly for Photoenergy Utilization. International Journal of Photoenergy, 2014, 2014, 1-15.	1.4	12
182	Core@Satellite Janus Nanomotors with pHâ€Responsive Multiâ€phoretic Propulsion. Angewandte Chemie, 2020, 132, 14474-14478.	1.6	12
183	Exotemplating synthesis of nitrogen-doped carbon materials with hierarchically porous structure and their application for lysozyme adsorption. Chemical Engineering Journal, 2011, 174, 452-460.	6.6	11
184	Solar Energy Catalysis. Angewandte Chemie, 2022, 134, .	1.6	11
185	Zirconium ribonucleotide surface-functionalized mesoporous SBA-15 materials with high capacity of CO2 capture. Chemical Engineering Journal, 2011, 171, 368-372.	6.6	10
186	Shape and Orientation Controlled Hydrothermal Synthesis of Silicide and Metal Dichalcogenide on a Silicon Substrate. ACS Applied Materials & amp; Interfaces, 2020, 12, 18850-18858.	4.0	10
187	A luminescent terbium coordination complex as multifunctional sensing platform. Talanta, 2020, 208, 120363.	2.9	9
188	Ligand Functionalization in Zirconiumâ€Based Metalâ€Organic Frameworks for Enhanced Carbon Dioxide Fixation. Advanced Sustainable Systems, 2020, 4, 2000098.	2.7	9
189	An ultrahigh sensitivity micro-cliff graphene wearable pressure sensor made by instant flash light exposure. Nanoscale, 2021, 13, 15380-15393.	2.8	9
190	Integrated Full‧pectrum Solar Energy Catalysis for Zeroâ€Emission Ethylene Production from Bioethanol. Advanced Functional Materials, 2022, 32, 2110026.	7.8	9
191	Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C 4 Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie, 2021, 133, 2571-2577.	1.6	8
192	Synergy of Bi ₂ O ₃ and RuO ₂ Nanocatalysts for Lowâ€Overpotential and Wide pHâ€Window Electrochemical Ammonia Synthesis. Chemistry - A European Journal, 2021, 27, 17395-17401.	1.7	8
193	Enhanced photocatalytic activity of a B ₁₂ -based catalyst co-photosensitized by TiO ₂ and Ru(<scp>ii</scp>) towards dechlorination. RSC Advances, 2018, 8, 662-670.	1.7	6
194	Nanodeserts: A Conjecture in Nanotechnology to Enhance Quasi-Photosynthetic CO2Absorption. International Journal of Polymer Science, 2016, 2016, 1-10.	1.2	5
195	Graphitic Carbon Nitride: Host–Guest Recognition on 2D Graphitic Carbon Nitride for Nanosensing (Adv. Mater. Interfaces 23/2019). Advanced Materials Interfaces, 2019, 6, 1970144.	1.9	5
196	Smart Solar–Metal–Air Batteries Based on BiOCl Photocorrosion for Monolithic Solar Energy Conversion and Storage. Small, 2022, 18, e2105668.	5.2	5
197	IrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weakâ€Lightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie, 2021, 133, 26994-27001.	1.6	4
198	Pulseâ€potential electrochemistry to boost realâ€life application of pseudocapacitive dualâ€doped polypyrrole. SmartMat, 2022, 3, 644-656.	6.4	4

#	Article	IF	CITATIONS
199	When Carbon Meets CO ₂ : Functional Carbon Nanostructures for CO ₂ Utilization. Journal of Nanoscience and Nanotechnology, 2019, 19, 3148-3161.	0.9	3
200	Coupling 0D and 1D Carbons for Electrochemical Hydrogen Production Promoted by a Percolation Mechanism. ChemSusChem, 2020, 13, 4094-4102.	3.6	3
201	Gold and CuO nanocatalysts supported on hierarchical structured Ce-doped titanias for low temperature CO oxidation. Studies in Surface Science and Catalysis, 2010, , 575-579.	1.5	2
202	Synthesis and Photocatalytic Performance of Hierarchical Porous Titanium Phosphonate Hybrid Materials. Advanced Materials Research, 0, 132, 87-95.	0.3	2
203	Tracking the redox reaction-induced reconstruction of NiAu nanoparticles <i>via</i> environmental scanning transmission electron microscopy. Nanoscale, 2022, 14, 4089-4097.	2.8	2
204	Hierarchical meso-/macroporous phosphated and phosphonated titania nanocomposite materials with high photocatalytic activity. Studies in Surface Science and Catalysis, 2010, 175, 571-574.	1.5	1
205	Structurally and Elementally Promoted Nanomaterials for Photocatalysis. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	1
206	Horizons Community Board collection – emerging 2D materials for energy and electronics applications. Nanoscale Horizons, 2019, 4, 1027-1028.	4.1	1
207	Editorial: Key Electrochemical Energy Reactions Catalyzed by Nanomaterials. Frontiers in Chemistry, 2019, 7, 881.	1.8	1
208	Hybrid Inorganicâ€Organic Photochromic Film Based on Polymolybdate and Isoniazid Dimer: Synthesis, Structure, and Photochromism. European Journal of Inorganic Chemistry, 2020, 2020, 4002-4006.	1.0	1
209	Horizons Community Board collection – emerging 2D materials for energy and electronics applications. Materials Horizons, 2019, 6, 1092-1093.	6.4	Ο