Dong-Ling Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2894226/publications.pdf Version: 2024-02-01

DONG-LING DENC

#	Article	IF	CITATIONS
1	Sample complexity of learning parametric quantum circuits. Quantum Science and Technology, 2022, 7, 025014.	2.6	9
2	Solving quantum master equations with deep quantum neural networks. Physical Review Research, 2022, 4, .	1.3	9
3	Recent advances for quantum classifiers. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	40
4	Quantum information scrambling in quantum many-body scarred systems. Physical Review Research, 2022, 4, .	1.3	7
5	Quantum Continual Learning Overcoming Catastrophic Forgetting. Chinese Physics Letters, 2022, 39, 050303.	1.3	3
6	Solving the Liouvillian Gap with Artificial Neural Networks. Physical Review Letters, 2021, 126, 160401.	2.9	13
7	Anomalous quantum information scrambling for Z3 parafermion chains. Physical Review B, 2021, 103, .	1.1	2
8	Unsupervised Learning of Non-Hermitian Topological Phases. Physical Review Letters, 2021, 126, 240402.	2.9	22
9	Quantum enhanced convolutional neural networks for NISQ computers. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	7
10	Observation of Non-Hermitian Topology with Nonunitary Dynamics of Solid-State Spins. Physical Review Letters, 2021, 127, 090501.	2.9	37
11	Quantum federated learning through blind quantum computing. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	31
12	Markovian Quantum Neuroevolution for Machine Learning. Physical Review Applied, 2021, 16, .	1.5	13
13	Quantum generative adversarial networks with multiple superconducting qubits. Npj Quantum Information, 2021, 7, .	2.8	14
14	Topological Quantum Compiling with Reinforcement Learning. Physical Review Letters, 2020, 125, 170501.	2.9	46
15	Entangling nuclear spins by dissipation in a solid-state system. Physical Review A, 2020, 102, .	1.0	2
16	Artificial neural network based computation for out-of-time-ordered correlators. Physical Review B, 2020, 101, .	1.1	8
17	Experimental test of Leggett's inequalities with solid-state spins. Physical Review A, 2020, 102, .	1.0	0
18	Quantum adversarial machine learning. Physical Review Research, 2020, 2, .	1.3	55

DONG-LING DENG

#	Article	IF	CITATIONS
19	Quantum generative adversarial learning in a superconducting quantum circuit. Science Advances, 2019, 5, eaav2761.	4.7	108
20	Machine Learning Topological Phases with a Solid-State Quantum Simulator. Physical Review Letters, 2019, 122, 210503.	2.9	47
21	Machine learning meets quantum physics. Physics Today, 2019, 72, 48-54.	0.3	117
22	Probe Knots and Hopf Insulators with Ultracold Atoms. Chinese Physics Letters, 2018, 35, 013701.	1.3	24
23	Asymmetric Particle Transport and Light-Cone Dynamics Induced by Anyonic Statistics. Physical Review Letters, 2018, 121, 250404.	2.9	18
24	Machine Learning Many-Body Localization: Search for the Elusive Nonergodic Metal. Physical Review Letters, 2018, 121, 245701.	2.9	56
25	Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems. Physical Review Letters, 2018, 120, 240402.	2.9	51
26	Intrinsic decoherence in isolated quantum systems. Physical Review B, 2017, 95, .	1.1	15
27	Logarithmic entanglement lightcone in many-body localized systems. Physical Review B, 2017, 95, .	1.1	23
28	Statistical bubble localization with random interactions. Physical Review B, 2017, 95, .	1.1	18
29	Transport properties across the many-body localization transition in quasiperiodic and random systems. Physical Review B, 2017, 96, .	1.1	42
30	Manyâ€body localization in incommensurate models with a mobility edge. Annalen Der Physik, 2017, 529, 1600399.	0.9	40
31	Machine learning topological states. Physical Review B, 2017, 96, .	1.1	222
32	Quantum Entanglement in Neural Network States. Physical Review X, 2017, 7, .	2.8	241
33	Majorana spintronics. Physical Review B, 2016, 94, .	1.1	33
34	Noise-induced collective quantum state preservation in spin qubit arrays. Physical Review B, 2016, 93, .	1.1	11
35	Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge. Physical Review B, 2016, 93, .	1.1	74
36	Proposal for observing non-Abelian statistics of Majorana-Shockley fermions in an optical lattice. Physical Review B, 2015, 91, .	1.1	11

DONG-LING DENG

#	Article	IF	CITATIONS
37	Exponential orthogonality catastrophe in single-particle and many-body localized systems. Physical Review B, 2015, 92, .	1.1	29
38	Hamiltonian tomography for quantum many-body systems with arbitrary couplings. New Journal of Physics, 2015, 17, 093017.	1.2	29
39	Directly probing the Chern number of the Haldane model in optical lattices. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2500.	0.9	3
40	Direct probe of topological order for cold atoms. Physical Review A, 2014, 90, .	1.0	38
41	Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof. Scientific Reports, 2014, 4, 4291.	1.6	18
42	DETECTING EINSTEIN–PODOLSKY–ROSEN STEERING FOR CONTINUOUS VARIABLE WAVEFUNCTIONS. International Journal of Quantum Information, 2013, 11, 1350019.	0.6	5
43	Fault-tolerant quantum random-number generator certified by Majorana fermions. Physical Review A, 2013, 88, .	1.0	13
44	State-Independent Experimental Test of Quantum Contextuality with a Single Trapped Ion. Physical Review Letters, 2013, 110, 070401.	2.9	70
45	Quantum contextuality for a relativistic spin-1/2 particle. Physical Review A, 2013, 87, .	1.0	2
46	Testing Leggett's Inequality Using Aharonov-Casher Effect. Scientific Reports, 2013, 3, 2492.	1.6	4
47	Nonlocal distillation based on multisetting Bell inequality. Physical Review A, 2012, 86, .	1.0	4
48	State-Independent Experimental Test of Quantum Contextuality in an Indivisible System. Physical Review Letters, 2012, 109, 150401.	2.9	59
49	Bell nonlocality in conventional and topological quantum phase transitions. Physical Review A, 2012, 86, .	1.0	35
50	Detecting full <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:math> -particle entanglement in arbitrarily-high-dimensional systems with Bell-type inequalities. Physical Review A, 2011, 83, .	1.0	37
51	Detect genuine multipartite entanglement in the one-dimensional transverse-field Ising model. Annals of Physics, 2010, 325, 367-372.	1.0	8
52	Proposed Entanglement Swapping in Continuous Variable Systems via Braiding. Communications in Theoretical Physics, 2010, 54, 981-984.	1.1	1
53	Greenberger—Horne—Zeilinger Paradox and Quantum Entanglement Swapping in One-Dimensional Lipkin—Meshkov—Glick Model. Communications in Theoretical Physics, 2010, 54, 663-666. 	1.1	1
54	Fault-Tolerant Greenberger-Horne-Zeilinger Paradox Based on Non-Abelian Anyons. Physical Review Letters, 2010, 105, 060402.	2.9	8

DONG-LING DENG

#	Article	IF	CITATIONS
55	Tight correlation-function Bell inequality for multipartited-dimensional systems. Physical Review A, 2009, 79, .	1.0	10
56	Bell inequality for qubits based on the Cauchy-Schwarz inequality. Physical Review A, 2009, 79, .	1.0	8
57	Proposed all-versus-nothing violation of local realism in the Kitaev spin-lattice model. Physical Review A, 2009, 79, .	1.0	4
58	Relevant multi-setting tight Bell inequalities for qubits and qutrits. Annals of Physics, 2009, 324, 1996-2003.	1.0	5
59	Bounds of concurrence and their relation with fidelity and frontier states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1616-1620.	0.9	15
60	Sufficient and necessary condition of separability for generalized Werner states. Annals of Physics, 2009, 324, 408-413.	1.0	5
61	Svetlichny's approach to detecting genuine multipartite entanglement in arbitrarily-high-dimensional systems by a Bell-type inequality. Physical Review A, 2009, 80, .	1.0	8
62	Reexamination of a multisetting Bell inequality for qudits. Physical Review A, 2009, 80, .	1.0	40
63	ENTANGLEMENT, PURITY AND VIOLATION OF BELL INEQUALITY. International Journal of Quantum Information, 2009, 07, 1313-1320.	0.6	3
64	MAXIMAL QUANTUM VIOLATION OF THE CGLMP INEQUALITY ON ITS BOTH SIDES. International Journal of Quantum Information, 2008, 06, 1067-1076.	0.6	3
65	SO(4) symmetry in the relativistic hydrogen atom. Physical Review A, 2008, 77, .	1.0	8
66	Gisin's theorem for two <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>d</mml:mi></mml:math> -dimensional systems based on the Collins-Gisin-Linden-Masser-Popescu inequality. Physical Review A, 2008, 77, .	1.0	14
67	Universal Adversarial Examples and Perturbations for Quantum Classifiers. National Science Review, 0, , .	4.6	6