Parameswaran Nair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia. New England Journal of Medicine, 2009, 360, 985-993.	27.0	1,260
2	Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, The, 2016, 388, 2128-2141.	13.7	1,070
3	Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. New England Journal of Medicine, 2018, 378, 2475-2485.	27.0	816
4	Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. New England Journal of Medicine, 2017, 376, 2448-2458.	27.0	779
5	Reslizumab for Poorly Controlled, Eosinophilic Asthma. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1125-1132.	5.6	649
6	Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. Journal of Allergy and Clinical Immunology, 2016, 137, 75-86.e8.	2.9	388
7	Altered Respiratory Physiology in Obesity. Canadian Respiratory Journal, 2006, 13, 203-210.	1.6	374
8	Omalizumab for asthma in adults and children. The Cochrane Library, 2014, , CD003559.	2.8	329
9	Safety and efficacy of a <scp>CXCR</scp> 2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placeboâ€controlled clinical trial. Clinical and Experimental Allergy, 2012, 42, 1097-1103.	2.9	300
10	Role of Biologics in Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 433-445.	5.6	296
11	Revisiting <scp>T</scp> ype 2â€high and <scp>T</scp> ype 2â€юw airway inflammation in asthma: current knowledge and therapeutic implications. Clinical and Experimental Allergy, 2017, 47, 161-175.	2.9	287
12	Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab) Tj ETQq recommendations on the use of biologicals in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1023-1042.	0 0 0 rgBT 5.7	/Overlock 10 232
13	Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. American Journal of Medicine, 2004, 116, 338-344.	1.5	225
14	Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respiratory Medicine,the, 2016, 4, 797-806.	10.7	202
15	Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Frontiers in Medicine, 2017, 4, 158.	2.6	190
16	EAACI Biologicals Guidelines—Recommendations for severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 14-44.	5.7	156
17	Weight-adjusted Intravenous Reslizumab in Severe Asthma with Inadequate Response to Fixed-Dose Subcutaneous Mepolizumab. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 38-46.	5.6	150
18	Mechanisms and therapeutic strategies for nonâ€72 asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 311-325.	5.7	148

#	Article	IF	CITATIONS
19	The definition and diagnosis of Asthma. Clinical and Experimental Allergy, 2009, 39, 1652-1658.	2.9	134
20	The Safety of Long-Acting β-Agonists among Patients with Asthma Using Inhaled Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1009-1016.	5.6	99
21	Sputum autoantibodies in patients with severe eosinophilic asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1269-1279.	2.9	93
22	Role of local eosinophilopoietic processes in the development of airway eosinophilia in prednisoneâ€dependent severe asthma. Clinical and Experimental Allergy, 2016, 46, 793-802.	2.9	90
23	Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI Guidelines â€recommendations on the use of biologicals in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1043-1057.	5.7	85
24	MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. Journal of Allergy and Clinical Immunology, 2015, 136, 462-473.	2.9	84
25	Benralizumab attenuates airway eosinophilia in prednisone-dependent asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1529-1532.e8.	2.9	80
26	Safety and efficacy of an oral <scp>CCR</scp> 3 antagonist in patients with asthma and eosinophilic bronchitis: a randomized, placeboâ€controlled clinical trial. Clinical and Experimental Allergy, 2014, 44, 508-516.	2.9	79
27	Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1177-1184.	5.7	78
28	Autoimmune Responses in Severe Asthma. Allergy, Asthma and Immunology Research, 2018, 10, 428.	2.9	77
29	CT and Functional MRI to Evaluate AirwayÂMucus in Severe Asthma. Chest, 2019, 155, 1178-1189.	0.8	77
30	Sputum Eosinophilia and Magnetic Resonance Imaging Ventilation Heterogeneity in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 876-884.	5.6	76
31	Metabolomic profiling of asthma and chronic obstructive pulmonary disease: AÂpilot study differentiating diseases. Journal of Allergy and Clinical Immunology, 2015, 136, 571-580.e3.	2.9	75
32	Suboptimal treatment response to anti-IL-5 monoclonal antibodies in severe eosinophilic asthmatics with airway autoimmune phenomena. European Respiratory Journal, 2020, 56, 2000117.	6.7	71
33	Monoclonal antibodies for the treatment of refractory asthma. Current Opinion in Pulmonary Medicine, 2014, 20, 87-94.	2.6	69
34	Anti-IL5 therapy for asthma and beyond. World Allergy Organization Journal, 2014, 7, 32.	3.5	68
35	Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy, Asthma and Clinical Immunology, 2015, 11, 14.	2.0	68
36	Airway Hyperresponsiveness in Asthma: Measurement and Clinical Relevance. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 649-659.e2.	3.8	68

#	Article	IF	CITATIONS
37	Regulation of human airway smooth muscle cell migration and relevance to asthma. Respiratory Research, 2017, 18, 156.	3.6	68
38	Efficacy and safety of treatment with dupilumab for severe asthma: A systematic review of the EAACI guidelines—Recommendations on the use of biologicals in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1058-1068.	5.7	67
39	What is an "eosinophilic phenotype―of asthma?. Journal of Allergy and Clinical Immunology, 2013, 132, 81-83.	2.9	66
40	Heterogeneity of Bronchitis in Airway Diseases in Tertiary Care Clinical Practice. Canadian Respiratory Journal, 2011, 18, 144-148.	1.6	62
41	Is ventilation heterogeneity related to asthma control?. European Respiratory Journal, 2016, 48, 370-379.	6.7	62
42	Modulation of Human Airway Smooth Muscle Migration by Lipid Mediators and Th-2 Cytokines. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 240-247.	2.9	60
43	The Effects of Leptin on Airway Smooth Muscle Responses. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 475-481.	2.9	60
44	Blood or sputum eosinophils to guide asthma therapy?. Lancet Respiratory Medicine,the, 2015, 3, 824-825.	10.7	60
45	Changing Paradigms in the Treatment of Severe Asthma: The Role of Biologic Therapies. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, S1-S14.	3.8	57
46	Eosinophilic Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 465-473.	3.8	54
47	Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respiratory Research, 2015, 16, 72.	3.6	51
48	A pilot randomised clinical trial ofÂmepolizumab in COPD with eosinophilic bronchitis. European Respiratory Journal, 2017, 49, 1602486.	6.7	51
49	Eosinophilic Endotype of Asthma. Immunology and Allergy Clinics of North America, 2016, 36, 559-568.	1.9	50
50	Eosinophil-derived IL-13 promotes emphysema. European Respiratory Journal, 2019, 53, 1801291.	6.7	47
51	Nitric oxide in exhaled breath is poorly correlated to sputum eosinophils in patients with prednisone-dependent asthma. Journal of Allergy and Clinical Immunology, 2010, 126, 404-406.	2.9	46
52	Airway autoimmune responses in severe eosinophilic asthma following low-dose Mepolizumab therapy. Allergy, Asthma and Clinical Immunology, 2017, 13, 2.	2.0	46
53	Is Computed Tomography Airway Count Related to Asthma Severity and Airway Structure and Function?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 923-933.	5.6	46
54	Measuring Bronchitis in Airway Diseases: Clinical Implementation and Application. Chest, 2010, 138, 38S-43S.	0.8	45

#	Article	IF	CITATIONS
55	Persistence of pulmonary tertiary lymphoid tissues and anti-nuclear antibodies following cessation of cigarette smoke exposure. Respiratory Research, 2014, 15, 49.	3.6	45
56	How to Diagnose and Phenotype Asthma. Clinics in Chest Medicine, 2012, 33, 445-457.	2.1	42
57	Anti–Interleukin-5 Monoclonal Antibody to Treat Severe Eosinophilic Asthma. New England Journal of Medicine, 2014, 371, 1249-1251.	27.0	42
58	Disease-modifying anti-asthmatic drugs. Lancet, The, 2022, 399, 1664-1668.	13.7	42
59	The aryl hydrocarbon receptor suppresses cigarette-smoke-induced oxidative stress in association with dioxin response element (DRE)-independent regulation of sulfiredoxin 1. Free Radical Biology and Medicine, 2015, 89, 342-357.	2.9	41
60	Therapeutic implications of â€~neutrophilic asthma'. Current Opinion in Pulmonary Medicine, 2015, 21, 33-38.	2.6	39
61	A sensitive high throughput ELISA for human eosinophil peroxidase: A specific assay to quantify eosinophil degranulation from patient-derived sources. Journal of Immunological Methods, 2012, 384, 10-20.	1.4	38
62	Expiratory flows and airway inflammation in elderly asthmatic patients. Respiratory Medicine, 2011, 105, 1284-1289.	2.9	37
63	Glucocortiosteroid subsensitivity and asthma severity. Current Opinion in Pulmonary Medicine, 2017, 23, 78-88.	2.6	37
64	Asthma exacerbations on benralizumab are largely nonâ€eosinophilic. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 375-379.	5.7	36
65	The Role of the TL1A/DR3 Axis in the Activation of Group 2 Innate Lymphoid Cells in Subjects with Eosinophilic Asthma. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1105-1114.	5.6	35
66	Neutrophilic asthma: misconception or misnomer?. Lancet Respiratory Medicine, the, 2021, 9, 441-443.	10.7	35
67	Nasal and pharyngeal eosinophil peroxidase levels in adults with poorly controlled asthma correlate with sputum eosinophilia. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 567-570.	5.7	34
68	Antiinflammatory Effects of Long-Acting β 2 -Agonists in Patients With Asthma. Chest, 2009, 136, 145-154.	0.8	33
69	Sputum Hyaluronan and Versican in Severe Eosinophilic Asthma. International Archives of Allergy and Immunology, 2013, 161, 65-73.	2.1	32
70	Free-breathing Pulmonary MR Imaging to Quantify Regional Ventilation. Radiology, 2018, 287, 693-704.	7.3	32
71	Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respiratory Research, 2014, 15, 145.	3.6	31
72	Altered DNA methylation is associated with aberrant gene expression in parenchymal but not airway fibroblasts isolated from individuals with COPD. Clinical Epigenetics, 2018, 10, 32.	4.1	31

#	Article	IF	CITATIONS
73	Efficacy of Intravenous Reslizumab in Oral Corticosteroid–Dependent Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 555-564.	3.8	31
74	Airway Eosinophilopoietic and Autoimmune Mechanisms of Eosinophilia in Severe Asthma. Immunology and Allergy Clinics of North America, 2018, 38, 639-654.	1.9	30
75	Dose-dependent anti-inflammatory effect of inhaled mometasone furoate/formoterol in subjects with asthma. Respiratory Medicine, 2013, 107, 656-664.	2.9	29
76	Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. Journal of Immunological Methods, 2017, 449, 44-55.	1.4	29
77	Human Bronchial Epithelial Cell–derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 99-106.	2.9	28
78	Point: Is Measuring Sputum Eosinophils Useful in the Management of Severe Asthma? Yes. Chest, 2011, 139, 1270-1273.	0.8	27
79	Free-breathing Functional Pulmonary MRI. Academic Radiology, 2017, 24, 1268-1276.	2.5	27
80	Dupilumab, severe asthma airway responses, and SARSâ€CoVâ€⊋ serology. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 957-958.	5.7	26
81	Decreased expression of the NF-l̂ºB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression. Respiratory Research, 2015, 16, 54.	3.6	25
82	Airway Inflammation and Inflammatory Biomarkers. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 056-063.	2.1	25
83	Asthma Control, Airway Mucus, and 129Xe MRI Ventilation After a Single Benralizumab Dose. Chest, 2022, 162, 520-533.	0.8	25
84	Serum periostin as a marker of TH2-dependent eosinophilic airway inflammation. Journal of Allergy and Clinical Immunology, 2012, 130, 655-656.	2.9	24
85	Update on Clinical Inflammometry for the Management of Airway Diseases. Canadian Respiratory Journal, 2013, 20, 117-120.	1.6	24
86	The interleukin-13 paradox in asthma: effective biology, ineffective biologicals. European Respiratory Journal, 2019, 53, 1802250.	6.7	24
87	Effects of Anti-T2 Biologic Treatment on Lung Ventilation Evaluated by MRI in Adults With Prednisone-Dependent Asthma. Chest, 2020, 158, 1350-1360.	0.8	24
88	Does the usage of digital chest drainage systems reduce pleural inflammation and volume of pleural effusion following oncologic pulmonary resection?—A prospective randomized trial. Journal of Thoracic Disease, 2017, 9, 1598-1606.	1.4	23
89	Targeted therapy of bronchitis in obstructive airway diseases. , 2013, 140, 213-222.		22
90	Measuring Eosinophils to Make Treatment Decisions in Asthma. Chest, 2016, 150, 485-487.	0.8	22

#	Article	IF	CITATIONS
91	Efficacy and safety of reslizumab in patients with moderate to severe eosinophilic asthma. Expert Review of Respiratory Medicine, 2015, 9, 135-142.	2.5	21
92	Reproducibility of Hyperpolarized 129Xe MRI Ventilation Defect Percent in Severe Asthma to Evaluate Clinical Trial Feasibility. Academic Radiology, 2020, 28, 817-826.	2.5	21
93	MicroRNA-155 Is Required for Clearance of Streptococcus pneumoniae from the Nasopharynx. Infection and Immunity, 2014, 82, 4824-4833.	2.2	20
94	Angiotensin-converting enzyme 2 expression in COPD and IPF fibroblasts: the forgotten cell in COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L152-L157.	2.9	20
95	Monitoring sputum eosinophils in mucosal inflammation and remodelling: a pilot study. European Respiratory Journal, 2010, 35, 48-53.	6.7	18
96	Sputum cell counts to manage prednisone-dependent asthma: effects on FEV1 and eosinophilic exacerbations. Allergy, Asthma and Clinical Immunology, 2017, 13, 17.	2.0	18
97	The role of eosinophils in sepsis and acute respiratory distress syndrome: a scoping review. Canadian Journal of Anaesthesia, 2021, 68, 715-726.	1.6	18
98	Cost Analysis of Monitoring Asthma Treatment using Sputum Cell Counts. Canadian Respiratory Journal, 2008, 15, 370-374.	1.6	17
99	Human antigen R promotes lung fibroblast differentiation to myofibroblasts and increases extracellular matrix production. Journal of Cellular Physiology, 2021, 236, 6836-6851.	4.1	17
100	Asthma Management by Monitoring Sputum Neutrophil Count. Chest, 2008, 134, 628-630.	0.8	16
101	Human bronchial and parenchymal fibroblasts display differences in basal inflammatory phenotype and response to ILâ€17A. Clinical and Experimental Allergy, 2016, 46, 945-956.	2.9	15
102	Hemosiderin in sputum macrophages may predict infective exacerbations of chronic obstructive pulmonary disease: a retrospective observational study. BMC Pulmonary Medicine, 2017, 17, 60.	2.0	15
103	Omalizumab in patients with severe asthma and persistent sputum eosinophilia. Allergy, Asthma and Clinical Immunology, 2019, 15, 21.	2.0	15
104	Normalisation of MRI ventilation heterogeneity in severe asthma by dupilumab. Thorax, 2019, 74, 1087-1088.	5.6	15
105	Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms. FASEB Journal, 2021, 35, e21376.	0.5	15
106	Impact of former smoking exposure on airway eosinophilic activation and autoimmunity in patients with severe asthma. European Respiratory Journal, 2022, 60, 2102446.	6.7	15
107	A Multidimensional Approach to the Management of Severe Asthma: Inflammometry, Molecular Microbiology and Bronchial Thermoplasty. Canadian Respiratory Journal, 2015, 22, 221-224.	1.6	14
108	A halotyrosine antibody that detects increased protein modifications in asthma patients. Journal of Immunological Methods, 2014, 403, 17-25.	1.4	13

#	Article	IF	CITATIONS
109	Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD. Canadian Respiratory Journal, 2016, 2016, 1-10.	1.6	13
110	Exacerbations of Severe Asthma While on Anti–IL-5 Biologics. Journal of Investigational Allergology and Clinical Immunology, 2020, 30, 307-316.	1.3	13
111	Monitoring eosinophils to guide therapy with biologics in asthma: does the compartment matter?. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1294-1297.	5.7	13
112	Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability. PLoS ONE, 2017, 12, e0180881.	2.5	13
113	Iron in airway macrophages and infective exacerbations of chronic obstructive pulmonary disease. Respiratory Research, 2022, 23, 8.	3.6	13
114	Cystic Fibrosis Transmembrane Conductance Regulator Gene Abnormalities in Patients with Asthma and Recurrent Neutrophilic Bronchitis. Canadian Respiratory Journal, 2012, 19, 46-48.	1.6	12
115	Underestimation of airway luminal eosinophilia by quantitative sputum cytometry. Allergy, Asthma and Clinical Immunology, 2021, 17, 63.	2.0	12
116	EAACI position paper on the clinical use of the bronchial allergen challenge: Unmet needs and research priorities. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1667-1684.	5.7	12
117	Sample sizes for clinical trials using sputum eosinophils as a primary outcome. European Respiratory Journal, 2013, 42, 1003-1011.	6.7	11
118	Anti-interleukin-13 and anti-interleukin-4 agents versus placebo, anti-interleukin-5 or anti-immunoglobulin-E agents, for people with asthma. The Cochrane Library, 2021, 2021, CD012929.	2.8	11
119	Persistent Sputum Cellularity and Neutrophils May Predict Bronchiectasis. Canadian Respiratory Journal, 2011, 18, 221-224.	1.6	10
120	Cytokine responses of peripheral blood mononuclear cells to allergen do not identify asthma or asthma phenotypes. Clinical and Experimental Allergy, 2013, 43, 1226-1235.	2.9	10
121	Development of a functional point-of-need diagnostic for myeloperoxidase detection to identify neutrophilic bronchitis. Analyst, The, 2016, 141, 6438-6443.	3.5	10
122	Modulation of human airway smooth muscle biology by human adipocytes. Respiratory Research, 2018, 19, 33.	3.6	10
123	Lasting Changes to Circulating Leukocytes in People with Mild SARS-CoV-2 Infections. Viruses, 2021, 13, 2239.	3.3	10
124	Quantitative Sputum Cell Counts to Monitor Bronchitis: A Qualitative Study of Physician and Patient Perspectives. Canadian Respiratory Journal, 2013, 20, 47-51.	1.6	9
125	Glucocorticoid Sparing of Benralizumab in Asthma. New England Journal of Medicine, 2017, 377, 1204-1205.	27.0	9
126	TWIST1 DNA methylation is a cell marker of airway and parenchymal lung fibroblasts that are differentially methylated in asthma. Clinical Epigenetics, 2020, 12, 145.	4.1	9

#	Article	IF	CITATIONS
127	The identification of eosinophilic gastroenteritis in prednisone-dependent eosinophilic bronchitis and asthma. Allergy, Asthma and Clinical Immunology, 2011, 7, 4.	2.0	8
128	Histone deacetylase activity and recurrent bacterial bronchitis in severe eosinophilic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 571-575.	5.7	8
129	Endogenous peroxidases in sputum interfere with horse-radish peroxidase-based ELISAs. Journal of Immunological Methods, 2018, 454, 76-79.	1.4	8
130	Effect of antiâ€lLâ€5 biologics on weight and body mass index. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2913-2916.	5.7	8
131	Rebuttal From Drs Hargreave and Nair. Chest, 2011, 139, 1275-1277.	0.8	7
132	Optimizing sputum cell counts prior to bronchial thermoplasty: A preliminary report. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2019, 3, 143-147.	0.5	7
133	The effects of an epithelial barrier protective cationic aerosol on allergenâ€induced airway inflammation in asthma: a randomized, placeboâ€controlled clinical trial. Clinical and Experimental Allergy, 2014, 44, 1200-1203.	2.9	6
134	Rapid quantification of sputum eosinophil peroxidase on a lateral flow test strip. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1176-1178.	5.7	6
135	Sputum and serum immunoglobulins in adult asthmatics with recurrent respiratory tract infections. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2105-2108.	5.7	6
136	Benralizumab for Prednisone-Dependent Eosinophilic Asthma Associated With Novel STAT3 Loss of Function Mutation. Chest, 2021, 159, e181-e184.	0.8	6
137	HuR drives lung fibroblast differentiation but not metabolic reprogramming in response to TGF-β and hypoxia. Respiratory Research, 2021, 22, 323.	3.6	6
138	Role of Human Antigen R (HuR) in the Regulation of Pulmonary ACE2 Expression. Cells, 2022, 11, 22.	4.1	6
139	Ventilation and Perfusion Lung Scintigraphy of Allergen-Induced Airway Responses in Atopic Asthmatic Subjects. Canadian Respiratory Journal, 2007, 14, 285-291.	1.6	5
140	Early interventions with inhaled corticosteroids in asthma: benefits and risks. Current Opinion in Pulmonary Medicine, 2011, 17, 12-15.	2.6	5
141	A perspective on point-of-care tests to detect eosinophilic bronchitis. Journal of Asthma, 2015, 52, 254-261.	1.7	5
142	Effect of sex on group 2 innate lymphoid cells in the airways of mild and severe asthmatics. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1397-1400.	5.7	5
143	Persistent Airway Plugs: A Call for Clinical Recognition and Novel Therapies. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	5
144	Treatment Strategy for Asthma. Chest, 2006, 129, 221-223.	0.8	4

9

#	Article	IF	CITATIONS
145	Reproducibility, Validity, and Responsiveness of Cell Counts in Blown Nasal Secretions. Allergy and Rhinology, 2011, 2, ar.2011.2.0006.	1.6	4
146	The use of cellular and molecular biomarkers to manage COPD exacerbations. Expert Review of Respiratory Medicine, 2017, 11, 1-9.	2.5	4
147	Luminal Eosinophil Cell Death as a Biomarker for Loss of Asthma Control?. Chest, 2020, 157, 1680-1681.	0.8	4
148	Differential expression of sputum and serum autoantibodies in patients with chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1169-L1182.	2.9	4
149	Eosinophils as potential mediators of autoimmunity in eosinophilic lung disease. , 2022, , 219-237.		4
150	Changing Pattern of Sputum Cell Counts During Successive Exacerbations of Chronic Obstructive Pulmonary Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2015, 12, 628-35.	1.6	4
151	Inhaled Corticosteroids and Adult Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1556-1557.	5.6	3
152	Predictors of response to <scp>anti″Lâ€5</scp> biologics. Respirology, 2020, 25, 1123-1125.	2.3	3
153	Medical algorithms: Approach to adult asthma exacerbations. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3556-3559.	5.7	3
154	Detecting immunoglobulins in processed sputa. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3798-3800.	5.7	3
155	Lessons of the month: A breathless severe asthmatic in the genomic era: Occam's razor or Hickam's dictum?. Clinical Medicine, 2020, 20, e264-e266.	1.9	3
156	Standardized Cannabis Smoke Extract Induces Inflammation in Human Lung Fibroblasts. Frontiers in Pharmacology, 2022, 13, 852029.	3.5	3
157	Benralizumab's anti-eosinophil efficacy may be decreased by impaired NK cell activity. European Respiratory Journal, 2022, 59, 2102210.	6.7	3
158	The Evolution of Sputum Cytometry to Assess Bronchitis. Canadian Respiratory Journal, 2013, 20, 415-416.	1.6	2
159	Sputum plug selection under inverted microscopy improves microbial identification during exacerbations of airway diseases. Respiratory Medicine, 2018, 134, 92-94.	2.9	2
160	Much ado about Biologicals: <i>Highlights of the Master Class on Biologicals, Prague, 2018</i> . Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 837-840.	5.7	2
161	Sputum quantitative cytometry in patients with interstitial lung disease and chronic cough. Respiratory Medicine, 2020, 170, 106067.	2.9	2
162	There is more to severe asthma associated with obesity than inflammation. Respirology, 2021, 26, 288-289.	2.3	2

#	Article	IF	CITATIONS
163	Pan-Canadian standards for severe asthma in electronic medical records. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 391-399.	0.5	2
164	Clinical biomarkers and noninvasive assessment of severe asthma. , 2019, , 93-112.		2
165	Sputum Inflammometry to Manage Chronic Obstructive Pulmonary Disease Exacerbations: Beyond Guidelines. Tuberculosis and Respiratory Diseases, 2020, 83, 175-184.	1.8	2
166	CFTR heterozygosity in severe asthma with recurrent airway infections: a retrospective review. Allergy, Asthma and Clinical Immunology, 2022, 18, .	2.0	2
167	Serum Procalcitonin and Infective Exacerbations of Asthma. Chest, 2011, 140, 1389-1390.	0.8	1
168	Asthma Associated With Incontinentia Pigmenti and Fanconi Anemia. Chest, 2013, 143, 856-858.	0.8	1
169	Relationship between Sputum Eosinophilia and Sinus Disease in Patients with Eosinophilic Bronchitis. American Journal of Rhinology and Allergy, 2014, 28, 378-382.	2.0	1
170	This is what asthma looks like: Review of new and emerging functional imaging methods and results. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2018, 2, 27-40.	0.5	1
171	Loss of bronchoprotection to Salbutamol during sputum induction with hypertonic saline: implications for asthma therapy. Allergy, Asthma and Clinical Immunology, 2018, 14, 26.	2.0	1
172	Reply to Yilmaz: Selection of Biologics for Type 2–High Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 791-792.	5.6	1
173	Direct and indirect bronchoprovocation tests in doseâ€response studies of inhaled corticosteroids: Past, present, and future directions. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 76, 1679-1692.	5.7	1
174	Exon 8 <i>KIT</i> mutation and pulmonary eosinophilia. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2094-2096.	5.7	1
175	Clinical equivalence testing of inhaled bronchodilators. , 2009, 119, 731-5.		1
176	Frederick E Hargreave. Canadian Respiratory Journal, 2011, 18, 193-193.	1.6	0
177	Nontubercular Mycobacterial Pulmonary Infection in Severe Asthma. Chest, 2011, 139, 721.	0.8	0
178	Response. Chest, 2019, 156, 808-809.	0.8	0
179	Inspiratory and Expiratory Respiratory System Resistance in Severe Asthma Pre- and Post-Bronchodilator. , 2021, , .		0
180	Notch4, uncovering an immunomodulator in allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3852-3854.	5.7	0

#	Article	IF	CITATIONS
181	Comprehensive Care Management in Conjunction with Sputum Cytometry-Guided Pharmacotherapy in a Post-Discharge Clinic for Patients with COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 411-416.	1.6	Ο
182	Multiple lung nodules, eosinophilia and severe asthma. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 0, , 1-4.	0.5	0
183	Clinical relevance of sputum bronchial epithelial cells: A retrospective cross-sectional study. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2022, 6, 35-40.	0.5	0
184	Practical Considerations in the Management of Eosinophilic Asthma. Respiratory Medicine, 2020, , 181-206.	0.1	0
185	Does early intervention with inhaled corticosteroids alter the natural history of mild persistent asthma?. , 2008, 118, 441-4.		Ο
186	The Inability to Limit Autoimmune Pathology Is Associated with COVID-19 Hospital Fatality. , 2022, , .		0
187	Abnormal ¹²⁹ Xe Ventilation MRI and Inhaled Corticosteroid Deposition in Severe Asthma. , 2022, , .		Ο
188	Hyperpolarized ¹²⁹ Xe Magnetic Resonance Imaging for the Assessment of Bronchiolitis Obliterans Syndrome (BOS) and Other Late-Onset Non-Infectious Pulmonary Complications (LONIPCs) Following Hematopoietic Stem Cell Transplantation. , 2022, , .		0
189	Eosinophil-Independent IL-5 Increase in Critically III COVID-19 Patients Associates with Favourable Outcome. , 2022, , .		Ο
190	A 68-Year-Old Woman With Refractory Cough and Insidious Tracheal Thickening. Chest, 2022, 161, e287-e291.	0.8	0
191	Airway Inflammatory Endotypes and Magnetic Resonance Imaging Ventilation Heterogeneity in Severe Asthma. , 2022, , .		Ο
192	Prevalence and Clinical Relevance of Ventilation Heterogeneity and Luminal Cellular Inflammation in Lung Cancer Patients Prior to Lung Resection: An Interim Analysis. , 2022, , .		0
193	Ventilation and perfusion abnormalities following recovery from noncritical COVID-19. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 0, , 1-10.	0.5	0