
Stephen G R Barnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893956/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>DNA</scp> damage foci: Meaning and significance. Environmental and Molecular Mutagenesis, 2015, 56, 491-504.	0.9	254
2	Gamma-H2AX-Based Dose Estimation for Whole and Partial Body Radiation Exposure. PLoS ONE, 2011, 6, e25113.	1.1	131
3	Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutation Research - Reviews in Mutation Research, 2016, 770, 238-261.	2.4	105
4	The shape of the radiation dose response for DNA double-strand break induction and repair. Genome Integrity, 2013, 4, 1.	1.0	64
5	The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiation Protection Dosimetry, 2015, 164, 265-270.	0.4	62
6	Manual versus automated γ-H2AX foci analysis across five European laboratories: Can this assay be used for rapid biodosimetry in a large scale radiation accident?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 756, 170-173.	0.9	60
7	RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay). International Journal of Radiation Biology, 2017, 93, 36-47.	1.0	49
8	Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans – joint RENEB and EURADOS inter-laboratory comparisons. International Journal of Radiation Biology, 2017, 93, 99-109.	1.0	48
9	The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). International Journal of Radiation Biology, 2017, 93, 58-64.	1.0	46
10	Inter- and intra-laboratory comparison of a multibiodosimetric approach to triage in a simulated, large scale radiation emergency. International Journal of Radiation Biology, 2014, 90, 193-202.	1.0	44
11	Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biology, 2015, 5, 150011.	1.5	42
12	Realising the European network of biodosimetry: RENEBstatus quo. Radiation Protection Dosimetry, 2015, 164, 42-45.	0.4	41
13	Gamma-H2AX biodosimetry for use in large scale radiation incidents: comparison of a rapid â€~96 well lyse/fix' protocol with a routine method. PeerJ, 2014, 2, e282.	0.9	41
14	Radiation protection of the eye lens in medical workers—basis and impact of the ICRP recommendations. British Journal of Radiology, 2016, 89, 20151034.	1.0	38
15	Is a semi-automated approach indicated in the application of the automated micronucleus assay for triage purposes?. Radiation Protection Dosimetry, 2014, 159, 87-94.	0.4	32
16	Inverse dose-rate effect of ionising radiation on residual 53BP1 foci in the eye lens. Scientific Reports, 2019, 9, 10418.	1.6	31
17	Combined Analysis of Gamma-H2AX/53BP1 Foci and Caspase Activation in Lymphocyte Subsets Detects Recent and More Remote Radiation Exposures. Radiation Research, 2013, 180, 603-609.	0.7	26
18	Web-based scoring of the dicentric assay, a collaborative biodosimetric scoring strategy for population triage in large scale radiation accidents. Radiation and Environmental Biophysics, 2014, 53, 241-254.	0.6	25

STEPHEN G R BARNARD

#	Article	IF	CITATIONS
19	Validation of Semi-automatic Scoring of Dicentric Chromosomes after Simulation of Three Different Irradiation Scenarios. Health Physics, 2014, 106, 764-771.	0.3	22
20	Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation. International Journal of Radiation Biology, 2017, 93, 118-126.	1.0	22
21	RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. International Journal of Radiation Biology, 2021, 97, 1181-1198.	1.0	17
22	A statistical framework for radiation dose estimation with uncertainty quantification from the Î ³ -H2AX assay. PLoS ONE, 2018, 13, e0207464.	1.1	14
23	Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. International Journal of Radiation Biology, 2018, 94, 1116-1124.	1.0	12
24	Super-Resolution Nanoscopy Imaging Applied to DNA Double-Strand Breaks. Radiation Research, 2017, 189, 19.	0.7	10
25	Multibiodose Radiation Emergency Triage Categorization Software. Health Physics, 2014, 107, 83-89.	0.3	9
26	Dicentric Dose Estimates for Patients Undergoing Radiotherapy in the RTGene Study to Assess Blood Dosimetric Models and the New Bayesian Method for Gradient Exposure. Radiation Research, 2018, 190, 596.	0.7	9
27	The future of biological dosimetry in mass casualty radiation emergency response, personalized radiation risk estimation and space radiation protection. International Journal of Radiation Biology, 2022, 98, 421-427.	1.0	9
28	Sensitivity and latency of ionising radiation-induced cataract. Experimental Eye Research, 2021, 212, 108772.	1.2	9
29	Scoring rings in the cell fusion-induced premature chromosome condensation (PCC) assay for high dose radiation exposure estimation after gamma-ray exposure. International Journal of Radiation Biology, 2019, 95, 1259-1267.	1.0	8
30	Individual response of the ocular lens to ionizing radiation. International Journal of Radiation Biology, 2023, 99, 138-154.	1.0	7
31	A Simplified Calyculin A-Induced Premature Chromosome Condensation (PCC) Protocol for the Biodosimetric Analysis of High-Dose Exposure to Gamma Radiation. Radiation Research, 2020, 193, 560.	0.7	6
32	Early Responses to Low-Dose Ionizing Radiation in Cellular Lens Epithelial Models. Radiation Research, 2021, 197, .	0.7	5
33	Radiation Biomarkers in Large Scale Human Health Effects Studies. Journal of Personalized Medicine, 2020, 10, 155.	1.1	4
34	On the Use of Random Effect Models for Radiation Biodosimetry. Trends in Mathematics, 2017, , 89-94.	0.1	0