

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893685/publications.pdf Version: 2024-02-01



HANCL

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material.<br>Nature Nanotechnology, 2021, 16, 661-666.                                                                        | 31.5 | 298       |
| 2  | Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 2021, 12, 1225.                                                                                                    | 12.8 | 221       |
| 3  | A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics, 2019,<br>6, 3196-3207.                                                                                                 | 6.6  | 212       |
| 4  | Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9, 1481.                                                                                                        | 12.8 | 126       |
| 5  | Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.                                                                                                                                | 9.1  | 104       |
| 6  | Multiwavelength Metasurfaces Based on Single‣ayer Dualâ€Wavelength Metaâ€Atoms: Toward Complete<br>Phase and Amplitude Modulations at Two Wavelengths. Advanced Optical Materials, 2017, 5, 1700079.                   | 7.3  | 103       |
| 7  | Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9,<br>3505-3534.                                                                                                     | 6.0  | 87        |
| 8  | Multifunctional Metasurface Design with a Generative Adversarial Network. Advanced Optical<br>Materials, 2021, 9, 2001433.                                                                                             | 7.3  | 78        |
| 9  | Multiâ€Level Electroâ€Thermal Switching of Optical Phaseâ€Change Materials Using Graphene. Advanced<br>Photonics Research, 2021, 2, 2000034.                                                                           | 3.6  | 75        |
| 10 | Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 2020, 28, 31932.                                                                                                        | 3.4  | 73        |
| 11 | Highâ€Efficiency Ultrathin Dualâ€Wavelength Pancharatnam–Berry Metasurfaces with Complete<br>Independent Phase Control. Advanced Optical Materials, 2019, 7, 1900594.                                                  | 7.3  | 67        |
| 12 | A Triple-Mode Bandpass Filter With Controllable Bandwidth Using QMSIW Cavity. IEEE Microwave and<br>Wireless Components Letters, 2018, 28, 654-656.                                                                    | 3.2  | 39        |
| 13 | Mutual Coupling Reduction of Closely <i>E</i> / <i>H</i> -Plane Coupled Antennas Through<br>Metasurfaces. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1996-2000.                                         | 4.0  | 38        |
| 14 | Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced<br>Optical Materials, 2022, 10, 2102113.                                                                               | 7.3  | 28        |
| 15 | Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity. Applied Physics Letters, 2019, 114, .                                    | 3.3  | 27        |
| 16 | Frequencyâ€Multiplexed Complexâ€Amplitude Metaâ€Devices Based on Bispectral 2â€Bit Coding Metaâ€Atoms.<br>Advanced Optical Materials, 2020, 8, 2000919.                                                                | 7.3  | 27        |
| 17 | Dualâ€Band Terahertz Autoâ€Focusing Airy Beam Based on Singleâ€Layer Geometric Metasurfaces with<br>Independent Complex Amplitude Modulation at Each Wavelength. Advanced Theory and Simulations,<br>2019, 2, 1900071. | 2.8  | 23        |
| 18 | Dual-Band High Efficiency Terahertz Meta-Devices Based on Reflective Geometric Metasurfaces. IEEE<br>Access, 2019, 7, 58131-58138.                                                                                     | 4.2  | 22        |

Hang Li

| #  | Article                                                                                                                                                                                                | IF                | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 19 | Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738.                                                                                                            | 3.3               | 18        |
| 20 | Deep neural network enabled active metasurface embedded design. Nanophotonics, 2022, 11, 4149-4158.                                                                                                    | 6.0               | 18        |
| 21 | A Wideband Dual-Polarized L-Probe Antenna Array with Hollow Structure and Modified Ground Plane<br>for Isolation Enhancement. IEEE Antennas and Wireless Propagation Letters, 2017, , 1-1.             | 4.0               | 17        |
| 22 | A novel dual-band bandpass filter using a single perturbed substrate integrated waveguide cavity. ,<br>2017, , .                                                                                       |                   | 16        |
| 23 | Highâ€Efficiency Fullâ€Space Complexâ€Amplitude Metasurfaces Enabled by a Biâ€Spectral Singleâ€Substrateâ€<br>Metaâ€Atom. Advanced Optical Materials, 2022, 10, .                                      | Layer             | 15        |
| 24 | Electrically tunable diffraction efficiency from gratings in Al-doped ZnO. Applied Physics Letters, 2017, 110, .                                                                                       | 3.3               | 13        |
| 25 | Multifunctional Geometric Metasurfaces Based on Triâ€5pectral Metaâ€Atoms with Completely<br>Independent Phase Modulations at Three Wavelengths. Advanced Theory and Simulations, 2020, 3,<br>2000099. | 2.8               | 13        |
| 26 | Alleviating Orbital-Angular-Momentum-Mode Dispersion Using a Reflective Metasurface. Physical<br>Review Applied, 2020, 13, .                                                                           | 3.8               | 12        |
| 27 | A compact tripleâ€mode bandpass filter based on isosceles rightâ€angled triangular resonator.<br>Microwave and Optical Technology Letters, 2020, 62, 2473-2479.                                        | 1.4               | 8         |
| 28 | Adaptive optical beam steering and tuning system based on electrowetting driven fluidic rotor.<br>Communications Physics, 2020, 3, .                                                                   | 5.3               | 6         |
| 29 | Multichannel Highâ€Efficiency Metasurfaces Based on Triâ€Band Singleâ€Cell Metaâ€Atoms with Independent<br>Complexâ€Amplitude Modulations. Advanced Photonics Research, 2021, 2, 2100088.              | 3.6               | 6         |
| 30 | A Microwave Direction of Arrival Estimation Technique Using a Single Antenna. IEEE Transactions on Antennas and Propagation, 2016, 64, 3189-3195.                                                      | 5.1               | 5         |
| 31 | Angular-dependent photodetection enhancement by a metallic circular disk optical antenna. AIP<br>Advances, 2017, 7, .                                                                                  | 1.3               | 5         |
| 32 | Generation of over 1000 Diffraction Spots from 2D Graded Photonic Super-Crystals. Photonics, 2020,<br>7, 27.                                                                                           | 2.0               | 4         |
| 33 | Fourâ€Channel Kaleidoscopic Metasurfaces Enabled by a Single‣ayered Singleâ€Cell Quadâ€Band Metaâ€Aton<br>Advanced Theory and Simulations, 2022, 5, .                                                  | <sup>1.</sup> 2.8 | 4         |
| 34 | An ultraâ€slowâ€wave transmission line on CMOS technology. Microwave and Optical Technology<br>Letters, 2017, 59, 604-606.                                                                             | 1.4               | 3         |
| 35 | Novel balanced single/dualâ€band bandpass filters based on a circular patch resonator. IET Microwaves, Antennas and Propagation, 2021, 15, 206-220.                                                    | 1.4               | 3         |
| 36 | Miniaturized dual-band filter using triple-folded substrate-integrated waveguide resonators.<br>Microwave and Optical Technology Letters, 2018, 60, 2038-2043.                                         | 1.4               | 2         |

| #  | Article                                                                                                     | IF | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------|----|-----------|
| 37 | Sandwiched PRS Fabry-Perot Structure for Achieving Compactness and Improved Aperture Efficieny. , 2018, , . |    | 1         |
| 38 | Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics. , 2018, , .                            |    | 1         |
| 39 | A High Performance Terahertz Metalens. , 2019, , .                                                          |    | 1         |
|    |                                                                                                             |    |           |

Multifunctional Metasurface Design with a Generative Adversarial Network (Advanced Optical) Tj ETQq000 rgBT /Overlock 10 Tf 50 622 7.3

| 41 | A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces. , 2021, , .                          |     | 1 |
|----|-----------------------------------------------------------------------------------------------------------------------|-----|---|
| 42 | Wide Field-of-view Achromatic Metalenses. , 2021, , .                                                                 |     | 1 |
| 43 | A Deep Neural Network Near-Universal Dielectric Meta-Atom Generator. , 2021, , .                                      |     | 0 |
| 44 | Understanding wide field-of-view metalenses. , 2022, , .                                                              |     | 0 |
| 45 | Spatial coherence filtering of normal incidence light through leaky mode engineering. AIP Advances, 2022, 12, 035033. | 1.3 | 0 |