
Davide Cristofori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Insights into the SnO ₂ Sensing Mechanism Based on the Properties of Shape Controlled Tin Oxide Nanoparticles. Chemistry of Materials, 2013, 25, 3675-3686.	6.7	82
2	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 40560-40567.	8.0	79
3	Upconversion-mediated Boltzmann thermometry in double-layered Bi ₂ SiO ₅ :Yb ³⁺ ,Tm ³⁺ @SiO ₂ hollow nanoparticles. Journal of Materials Chemistry C, 2020, 8, 7828-7836.	5.5	61
4	Lanthanide-Doped Bi ₂ SiO ₅ @SiO ₂ Core–Shell Upconverting Nanoparticles for Stable Ratiometric Optical Thermometry. ACS Applied Nano Materials, 2020, 3, 2594-2604.	5.0	55
5	Effect of age and level of damage on the autogenous healing of lime mortars. Composites Part B: Engineering, 2017, 124, 144-157.	12.0	52
6	Synthesis and optical properties of sub-micron sized rare earth-doped zirconia particles. Optical Materials, 2011, 33, 1745-1752.	3.6	46
7	High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. Journal of Materials Chemistry C, 2013, 1, 484-492.	5.5	46
8	Energy Transfer in Bi- and Er-Codoped Y ₂ O ₃ Nanocrystals: An Effective System for Rare Earth Fluorescence Enhancement. Journal of Physical Chemistry C, 2014, 118, 30071-30078.	3.1	43
9	Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	42
10	Encapsulation of submicrometer-sized silica particles by a thin shell of poly(methyl methacrylate). Journal of Colloid and Interface Science, 2009, 331, 351-355.	9.4	37
11	Structural and magnetic properties of mesoporous SiO2 nanoparticles impregnated with iron oxide or cobalt-iron oxide nanocrystals. Journal of Materials Chemistry, 2012, 22, 19276.	6.7	35
12	Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites. Applied Clay Science, 2018, 152, 51-64.	5.2	35
13	Confined-Melting-Assisted Synthesis of Bismuth Silicate Glass-Ceramic Nanoparticles: Formation and Optical Thermometry Investigation. ACS Applied Materials & Interfaces, 2020, 12, 55195-55204.	8.0	35
14	Bi ₂ SiO ₅ @g-SiO ₂ upconverting nanoparticles: a bismuth-driven core–shell self-assembly mechanism. Nanoscale, 2019, 11, 675-687.	5.6	31
15	Lanthanide-Doped Bismuth-Based Fluoride Nanocrystalline Particles: Formation, Spectroscopic Investigation, and Chemical Stability. Chemistry of Materials, 2019, 31, 8504-8514.	6.7	29
16	Structural and photoluminescence properties of ZrO2:Eu3+ @ SiO2 nanophosphors as a function of annealing temperature. Journal of Luminescence, 2010, 130, 2429-2436.	3.1	28
17	Laser beam irradiation of silver doped silicate glasses. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3177-3182.	1.4	24
18	Investigating the feasibility of valorizing residual char from biomass gasification as catalyst support in Fischer-Tropsch synthesis. Renewable Energy, 2020, 147, 884-894.	8.9	22

DAVIDE CRISTOFORI

#	Article	IF	CITATIONS
19	Effect of Graphite and Copper Oxide on the Performance of High Potential Li[Fe 1/3 Ni 1/3 Co 1/3]PO 4 Olivine Cathodes for Lithium Batteries. Electrochimica Acta, 2017, 225, 533-542.	5.2	17
20	Redesigning an Electrochemical MIP Sensor for PFOS: Practicalities and Pitfalls. Sensors, 2019, 19, 4433.	3.8	16
21	Structural and luminescence properties of europium(III)-doped zirconium carbonates and silica-supported Eu3+-doped zirconium carbonate nanoparticles. Journal of Nanoparticle Research, 2010, 12, 993-1002.	1.9	15
22	Electron microscopy of reverse biased p–n junctions. Micron, 2000, 31, 231-236.	2.2	12
23	Effect of the microstructure on concentration quenching in heavily doped Tb2O3–ZrO2 nanoparticles embedded in silica. Chemical Physics Letters, 2006, 431, 326-331.	2.6	11
24	On the synthesis of a compound with positive enthalpy of formation: Zinc-blende-like RuN thin films obtained by rf-magnetron sputtering. Applied Surface Science, 2014, 320, 863-870.	6.1	11
25	In situ synthesis of Eu(Tp)3 complex inside the pores of mesoporous silica nanoparticles. Journal of Luminescence, 2013, 142, 28-34.	3.1	9
26	On the synthesis and thermal stability of RuN, an uncommon nitride. Surface and Coatings Technology, 2016, 295, 93-98.	4.8	6
27	A multinuclear solid-state magnetic resonance study on submicrometer-sized SiO2 particles encapsulated by a PMMA shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 191-195.	4.7	3
28	Incorporation of Eu–Tb codoped nanophosphors in silica-based coatings assisted by atmospheric pressure plasma jet technology. Thin Solid Films, 2015, 578, 38-44.	1.8	3