Brian E Haggard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water quality concentration trends and loads identify management needs in the Lake Wister watershed. , 2022, 5, .		1
2	Measurable microcystin in Ozark streams was rare during summer 2018 baseflow conditions. Agricultural and Environmental Letters, 2022, 7, .	1.2	1
3	Water quality adjacent to swine slurry holding ponds associated with a concentrated animal feeding operation. , 2022, 5, .		1
4	Nitrogen form, concentration, and micronutrient availability affect microcystin production in cyanobacterial blooms. Harmful Algae, 2021, 103, 102002.	4.8	35
5	Natural Characteristics and Human Activity Influence Turbidity and Ion Concentrations in Streams. Journal of Contemporary Water Research and Education, 2021, 172, 34-49.	0.7	0
6	Manipulating Microvolumes of Fluids By Redox-Magnetohydrodynamics for Applications in Chemical Analysis. ECS Meeting Abstracts, 2021, MA2021-01, 1610-1610.	0.0	0
7	Reducing Dissolved Phosphorus in Stream Water May Not Influence Estimation of Sediment Equilibrium Phosphorus Concentrations. , 2019, 2, 1-5.		1
8	Establishing the linkages among watershed threats, in-stream alterations and biological responses remains a challenge: Fayetteville Shale as a case study. Current Opinion in Environmental Science and Health, 2018, 3, 27-32.	4.1	5
9	Optimizing the flow adjustment of constituent concentrations via LOESS for trend analysis. Environmental Monitoring and Assessment, 2018, 190, 103.	2.7	1
10	Water Chemistry During Baseflow Helps Inform Watershed Management: A Case Study of the Lake Wister Watershed, Oklahoma. Journal of Contemporary Water Research and Education, 2018, 165, 42-58.	0.7	3
11	Mitigating Soil Phosphorus Release Using Liquid Water Treatment Residuals. Journal - American Water Works Association, 2018, 110, E36.	0.3	1
12	Substituting values for censored data from Texas, USA, reservoirs inflated and obscured trends in analyses commonly used for water quality target development. Environmental Monitoring and Assessment, 2018, 190, 394.	2.7	0
13	Risk Indicators for Identifying Critical Source Areas in Five Arkansas Watersheds. Transactions of the ASABE, 2018, 61, 1025-1032.	1.1	4
14	Can high volume hydraulic fracturing effects be detected in large watersheds? A case study of the South Fork Little Red River. Current Opinion in Environmental Science and Health, 2018, 3, 40-46.	4.1	4
15	Unconventional natural gas development did not result in detectable changes in water chemistry (within the South Fork Little Red River). Environmental Monitoring and Assessment, 2017, 189, 209.	2.7	6
16	Spatiotemporal variation of bacterial water quality and the relationship with pasture land cover. Journal of Water and Health, 2017, 15, 839-848.	2.6	12
17	Impact of Macropores and Gravel Outcrops on Phosphorus Leaching at the Plot Scale in Silt Loam Soils. Transactions of the ASABE, 2017, 60, 823-835.	1.1	7
18	Are Floodplain Soils a Potential Phosphorus Source When Inundated That Can Be Effectively Managed?. Agricultural and Environmental Letters, 2016, 1, 160036.	1.2	4

BRIAN E HAGGARD

#	Article	IF	CITATIONS
19	Can We Manage Nonpointâ€Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?. Agricultural and Environmental Letters, 2016, 1, 160015.	1.2	9
20	Implementing Effects-Based Water Quality Criteria for Eutrophication in Beaver Lake, Arkansas: Linking Standard Development and Assessment Methodology. Journal of Environmental Quality, 2015, 44, 1503-1512.	2.0	5
21	Student Perceptions of the Arkansas Water Resources Center, Water Resources, and Water Issues. Journal of Natural Resources and Life Sciences Education, 2015, 44, 136-142.	1.5	1
22	Predicting changes in yield and water use in the production of corn in the United States under climate change scenarios. Ecological Engineering, 2015, 82, 555-565.	3.6	12
23	Phosphorus Retention and Remobilization along Hydrological Pathways in Karst Terrain. Environmental Science & Technology, 2014, 48, 4860-4868.	10.0	51
24	Development and Testing of an Inâ€Stream Phosphorus Cycling Model for the Soil and Water Assessment Tool. Journal of Environmental Quality, 2014, 43, 215-223.	2.0	25
25	Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highlyâ€productive reservoirs. Limnology and Oceanography, 2014, 59, 2203-2216.	3.1	57
26	Phosphorus Uptake and Release from Submerged Sediments in a Simulated Stream Channel Inundated with a Poultry Litter Source. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	5
27	Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and "Postnormal―Science. Journal of Environmental Quality, 2013, 42, 295-304.	2.0	238
28	Sestonic Chlorophyll-a Shows Hierarchical Structure and Thresholds with Nutrients across the Red River Basin, USA. Journal of Environmental Quality, 2013, 42, 437-445.	2.0	16
29	Land use effects on stream nutrients at Beaver Lake Watershed. Journal - American Water Works Association, 2013, 105, E1.	0.3	10
30	Within-River Phosphorus Retention: Accounting for a Missing Piece in the Watershed Phosphorus Puzzle. Environmental Science & amp; Technology, 2012, 46, 13284-13292.	10.0	94
31	The effect of periphyton stoichiometry and light on biological phosphorus immobilization and release in streams. Limnology, 2012, 13, 97-106.	1.5	42
32	Periphyton Nutrient Limitation and Maximum Potential Productivity in the Beaver Lake Basin, United States ¹ . Journal of the American Water Resources Association, 2012, 48, 896-908.	2.4	1
33	Change Point Analysis of Phosphorus Trends in the Illinois River (Oklahoma) Demonstrates the Effects of Watershed Management. Journal of Environmental Quality, 2011, 40, 1249-1256.	2.0	30
34	Development of Regression-Based Models to Predict Fecal Bacteria Numbers at Select Sites within the Illinois River Watershed, Arkansas and Oklahoma, USA. Water, Air, and Soil Pollution, 2011, 215, 525-547.	2.4	24
35	Physicochemical Characterization of Sediment in Northwest Arkansas Streams. Journal of Environmental Protection, 2011, 02, 629-638.	0.7	7
36	Phosphorus Distribution in Sequentially Extracted Fractions of Biosolids, Poultry Litter, and Granulated Products. Soil Science, 2010, 175, 154-161.	0.9	40

BRIAN E HAGGARD

#	Article	IF	CITATIONS
37	Biological Assessment to Support Ecological Recovery of a Degraded Headwater System. Environmental Management, 2010, 46, 459-470.	2.7	3
38	Antibiotic fate and transport in three effluent-dominated Ozark streams. Ecological Engineering, 2010, 36, 930-938.	3.6	52
39	Phosphorus Concentrations, Loads, and Sources within the Illinois River Drainage Area, Northwest Arkansas, 1997–2008. Journal of Environmental Quality, 2010, 39, 2113-2120.	2.0	29
40	Critical Evaluation of the Implementation of Mitigation Options for Phosphorus from Field to Catchment Scales. Journal of Environmental Quality, 2009, 38, 1989-1997.	2.0	51
41	New Distribution Records of An Endemic Diving Beetle, Heterosternuta sulphuria (Coleoptera:) Tj ETQq1 1 0.784 Naturalist, 2009, 54, 357-361.	314 rgBT 0.1	/Overlock 10 2
42	Net Changes in Antibiotic Concentrations Downstream from an Effluent Discharge. Journal of Environmental Quality, 2009, 38, 343-352.	2.0	29
43	Identification and evaluation of nutrient limitation on periphyton growth in headwater streams in the Pawnee Nation, Oklahoma. Ecological Engineering, 2008, 32, 178-186.	3.6	15
44	Evaluation of Regression Methodology with Lowâ€Frequency Water Quality Sampling to Estimate Constituent Loads for Ephemeral Watersheds in Texas. Journal of Environmental Quality, 2008, 37, 1847-1854.	2.0	23
45	BROILER LITTER RATE EFFECTS ON NUTRIENT LEACHING FROM SOIL UNDER PASTURE VEGETATION IN THE OZARK HIGHLANDS. Soil Science, 2007, 172, 1001-1018.	0.9	11
46	Variations in Stream Water and Sediment Phosphorus among Select Ozark Catchments. Journal of Environmental Quality, 2007, 36, 1725-1734.	2.0	60
47	Sediment Phosphorus Release at Beaver Reservoir, Northwest Arkansas, USA, 2002–2003: A Preliminary Investigation. Water, Air, and Soil Pollution, 2007, 179, 67-77.	2.4	24
48	Pharmaceuticals and Other Organic Chemicals in Selected North entral and Northwestern Arkansas Streams. Journal of Environmental Quality, 2006, 35, 1078-1087.	2.0	21
49	Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA. Ecological Engineering, 2006, 28, 280-287.	3.6	29
50	Phosphorus Transport in Streams. , 2006, , 105-130.		4
51	Solubility of Antimony and Other Elements in Samples Taken from Shooting Ranges. Journal of Environmental Quality, 2005, 34, 248-254.	2.0	292
52	NUTRIENT AND ?17-ESTRADIOL LOSS IN RUNOFF WATER FROM POULTRY LITTERS. Journal of the American Water Resources Association, 2005, 41, 245-256.	2.4	21
53	Nutrient retention in a point-source-enriched stream. Journal of the North American Benthological Society, 2005, 24, 29-47.	3.1	112
54	Development of a Phosphorus Index for Pastures Fertilized with Poultry Litter—Factors Affecting Phosphorus Runoff. Journal of Environmental Quality, 2004, 33, 2183-2191.	2.0	122

#	Article	IF	CITATIONS
55	Effect of Leaf Litter on Phosphorus Retention and Hydrological Properties at a First Order Stream in Northeast Oklahoma, USA. Journal of Freshwater Ecology, 2003, 18, 557-565.	1.2	7
56	EFFECT OF A POINT SOURCE INPUT ON STREAM NUTRIENT RETENTION. Journal of the American Water Resources Association, 2001, 37, 1291-1299.	2.4	84