
Dirk Fasshauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Choanoflagellates and the ancestry of neurosecretory vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190759.	4.0	17
2	A conformational switch driven by phosphorylation regulates the activity of the evolutionarily conserved SNARE Ykt6. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
3	Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis. Cell and Tissue Research, 2021, 385, 623-637.	2.9	22
4	<i>BET1</i> variants establish impaired vesicular transport as a cause for muscular dystrophy with epilepsy. EMBO Molecular Medicine, 2021, 13, e13787.	6.9	9
5	The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Scientific Reports, 2020, 10, 13020.	3.3	37
6	PI(4,5)P ₂ -dependent regulation of exocytosis by amisyn, the vertebrate-specific competitor of synaptobrevin 2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13468-13479.	7.1	10
7	Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): insights into the early evolution of neurotransmitters. NeuroReport, 2020, 31, 490-497.	1.2	27
8	Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Current Biology, 2020, 30, 2468-2480.e5.	3.9	24
9	Probing the Conformational Flexibility of the Munc18-1/Syntaxin-1A Complex. Biophysical Journal, 2020, 118, 24a.	0.5	0
10	High Cell Diversity and Complex Peptidergic Signaling Underlie Placozoan Behavior. Current Biology, 2018, 28, 3495-3501.e2.	3.9	84
11	Getting Nervous: An Evolutionary Overhaul for Communication. Annual Review of Genetics, 2017, 51, 455-476.	7.6	44
12	Functional assays for the assessment of the pathogenicity of variants in GOSR2, an ER-to-Golgi SNARE involved in progressive myoclonus epilepsies. DMM Disease Models and Mechanisms, 2017, 10, 1391-1398.	2.4	11
13	Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals. Journal of Biological Chemistry, 2017, 292, 20449-20460.	3.4	11
14	Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evolutionary Biology, 2016, 16, 215.	3.2	15
15	Analysis of Scfd2 - A New Member of the SM Protein Family. Biophysical Journal, 2016, 110, 597a.	0.5	0
16	The SM protein Sly1 accelerates assembly of the ER–Golgi SNARE complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13828-13833.	7.1	40
17	Novel Cell Types, Neurosecretory Cells, and Body Plan of the Early-Diverging Metazoan Trichoplax adhaerens. Current Biology, 2014, 24, 1565-1572.	3.9	209
18	Interaction of Munc18C with Syntaxin4 and the Role of Munc18C in Exocytosis. Biophysical Journal, 2014, 106, 311a.	0.5	0

DIRK FASSHAUER

#	Article	IF	CITATIONS
19	Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural and Molecular Biology, 2013, 20, 679-686.	8.2	246
20	Syntaxin1a variants lacking an N-peptide or bearing the LE mutation bind to Munc18a in a closed conformation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12637-12642.	7.1	58
21	Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO Journal, 2012, 31, 2156-2168.	7.8	62
22	Molecular machines governing exocytosis of synaptic vesicles. Nature, 2012, 490, 201-207.	27.8	830
23	Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biology, 2012, 10, 71.	3.8	159
24	Primordial neurosecretory apparatus identified in the choanoflagellate <i>Monosiga brevicollis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15264-15269.	7.1	74
25	A Coiled Coil Trigger Site Is Essential for Rapid Binding of Synaptobrevin to the SNARE Acceptor Complex. Journal of Biological Chemistry, 2010, 285, 21549-21559.	3.4	25
26	Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion Journal of Biological Chemistry, 2010, 285, 11753.	3.4	5
27	Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis. Journal of Cell Biology, 2010, 188, 401-413.	5.2	115
28	Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis. Journal of General Physiology, 2010, 135, i2-i2.	1.9	0
29	The Ca2+ Affinity of Synaptotagmin 1 Is Markedly Increased by a Specific Interaction of Its C2B Domain with Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2009, 284, 25749-25760.	3.4	125
30	Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion. Journal of Biological Chemistry, 2009, 284, 32158-32166.	3.4	148
31	Is Assembly of the SNARE Complex Enough to Fuel Membrane Fusion?. Journal of Biological Chemistry, 2009, 284, 13143-13152.	3.4	65
32	A Conserved Membrane Attachment Site in α-SNAP Facilitates N-Ethylmaleimide-sensitive Factor (NSF)-driven SNARE Complex Disassembly. Journal of Biological Chemistry, 2009, 284, 31817-31826.	3.4	55
33	Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi. BMC Evolutionary Biology, 2009, 9, 19.	3.2	51
34	Differences in the SNARE evolution of fungi and metazoa. Biochemical Society Transactions, 2009, 37, 787-791.	3.4	23
35	Insights Into The Energetics Of Neuronal SNARE Complex Formation. Biophysical Journal, 2009, 96, 357a.	0.5	0
36	Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO Journal, 2008, 27, 923-933.	7.8	237

DIRK FASSHAUER

#	Article	IF	CITATIONS
37	Imaging the assembly and disassembly kinetics of <i>cis</i> NARE complexes on native plasma membranes. FEBS Letters, 2008, 582, 3563-3568.	2.8	15
38	SNAREing the Basis of Multicellularity: Consequences of Protein Family Expansion during Evolution. Molecular Biology and Evolution, 2008, 25, 2055-2068.	8.9	73
39	A Novel Site of Action for α-SNAP in the SNARE Conformational Cycle Controlling Membrane Fusion. Molecular Biology of the Cell, 2008, 19, 776-784.	2.1	41
40	Determinants of Synaptobrevin Regulation in Membranes. Molecular Biology of the Cell, 2007, 18, 2037-2046.	2.1	58
41	An Elaborate Classification of SNARE Proteins Sheds Light on the Conservation of the Eukaryotic Endomembrane System. Molecular Biology of the Cell, 2007, 18, 3463-3471.	2.1	201
42	Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO Journal, 2007, 26, 9-18.	7.8	71
43	Budding insights on cell polarity. Nature Structural and Molecular Biology, 2007, 14, 360-362.	8.2	10
44	Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nature Structural and Molecular Biology, 2007, 14, 904-911.	8.2	152
45	N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion. Science, 2006, 313, 673-676.	12.6	343
46	Identification of SNAP-47, a Novel Qbc-SNARE with Ubiquitous Expression*. Journal of Biological Chemistry, 2006, 281, 17076-17083.	3.4	90
47	Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO Journal, 2006, 25, 955-966.	7.8	251
48	Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Molecular Biology of the Cell, 2005, 16, 5675-5685.	2.1	61
49	A Transient N-terminal Interaction of SNAP-25 and Syntaxin Nucleates SNARE Assembly. Journal of Biological Chemistry, 2004, 279, 7613-7621.	3.4	165
50	Structural Basis for the Inhibitory Role of Tomosyn in Exocytosis. Journal of Biological Chemistry, 2004, 279, 47192-47200.	3.4	100
51	Structural insights into the SNARE mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 87-97.	4.1	96
52	The Habc Domain and the SNARE Core Complex Are Connected by a Highly Flexible Linker. Biochemistry, 2003, 42, 4009-4014.	2.5	41
53	Crystal Structure of a Complex Between Human Spliceosomal Cyclophilin H and a U4/U6 snRNP-60K Peptide. Journal of Molecular Biology, 2003, 331, 45-56.	4.2	46
54	The R-SNARE Motif of Tomosyn Forms SNARE Core Complexes with Syntaxin 1 and SNAP-25 and Down-regulates Exocytosis. Journal of Biological Chemistry, 2003, 278, 31159-31166.	3.4	122

DIRK FASSHAUER

#	Article	IF	CITATIONS
55	Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15516-15521.	7.1	268
56	Rapid and Selective Binding to the Synaptic SNARE Complex Suggests a Modulatory Role of Complexins in Neuroexocytosis. Journal of Biological Chemistry, 2002, 277, 7838-7848.	3.4	121
57	Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nature Structural Biology, 2002, 9, 107-111.	9.7	239
58	SNARE assembly and disassembly exhibit a pronounced hysteresis. Nature Structural Biology, 2002, 9, 144-151.	9.7	141
59	Homo- and Heterooligomeric SNARE Complexes Studied by Site-directed Spin Labeling. Journal of Biological Chemistry, 2001, 276, 13169-13177.	3.4	115
60	A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO Journal, 2000, 19, 6453-6464.	7.8	245
61	Selective Interaction of Complexin with the Neuronal SNARE Complex. Journal of Biological Chemistry, 2000, 275, 19808-19818.	3.4	162
62	Mixed and Non-cognate SNARE Complexes. Journal of Biological Chemistry, 1999, 274, 15440-15446.	3.4	271
63	Kinetics of Synaptotagmin Responses to Ca2+ and Assembly with the Core SNARE Complex onto Membranes. Neuron, 1999, 24, 363-376.	8.1	258
64	Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 à resolution. Nature, 1998, 395, 347-353.	27.8	2,191
65	Identification of a Minimal Core of the Synaptic SNARE Complex Sufficient for Reversible Assembly and Disassembly. Biochemistry, 1998, 37, 10354-10362.	2.5	239
66	Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15781-15786.	7.1	860
67	A Structural Change Occurs upon Binding of Syntaxin to SNAP-25. Journal of Biological Chemistry, 1997, 272, 4582-4590.	3.4	167
68	Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation. Journal of Biological Chemistry, 1997, 272, 28036-28041.	3.4	308
69	ADP ribosylation factor and a 14-kD polypeptide are associated with heparan sulfate-carrying post-trans-Golgi network secretory vesicles in rat hepatocytes Journal of Cell Biology, 1994, 125, 721-732.	5.2	35
70	ARF and VAPP14: Two Proteins Involved in the Delivery of Heparan Sulfate Proteoglycan from the trans-Golgi Network to the Plasma Membrane. Annals of the New York Academy of Sciences, 1994, 733, 344-356.	3.8	0
71	Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic, 0, , .	2.7	5