
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2893111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrodehalogenation of 4-chlorophenol and 4-bromophenol over Pd–Fe/Al2O3: influence of catalyst reduction conditions. Mendeleev Communications, 2022, 32, 249-252.	1.6	7
2	Ceria-silica mesoporous catalysts for CO preferential oxidation in H2-rich stream: The effect of Ce:Si ratio and copper modification. Applied Surface Science, 2022, 594, 153473.	6.1	12
3	Gas-Phase Hydrodechlorination of Chlorobenzene over Alumina-Supported Nickel Catalysts: Effect of Support Structure and Modification with Heteropoly Acid HSiW. Kinetics and Catalysis, 2021, 62, 127-145.	1.0	4
4	Formation of Active Centers of Nickel–Zinc Catalysts Deposited on the Nanodiamond for the Selective Hydrogenation of Phenylacetylene. Russian Journal of Physical Chemistry A, 2021, 95, 492-502.	0.6	1
5	Laser Electrodispersion of Metals for the Synthesis of Nanostructured Catalysts: Achievements and Prospects. Russian Journal of Physical Chemistry A, 2021, 95, 451-474.	0.6	11
6	Effect of MnO _{<i>x</i>} modification and template type on the catalytic performance of ceria-zirconia in CO and soot oxidation. Pure and Applied Chemistry, 2021, 93, 447-462.	1.9	5
7	Hydrodechlorination of 4-Chlorophenol on Pd-Fe Catalysts on Mesoporous ZrO2SiO2 Support. Molecules, 2021, 26, 141.	3.8	5
8	Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application. Molecules, 2020, 25, 4242.	3.8	37
9	Effect of Calcination Temperature on the Efficiency of Ni/Al2O3 in the Hydrodechlorination Reaction. Kinetics and Catalysis, 2020, 61, 444-459.	1.0	6
10	Templated Synthesis of Copper Modified Tin-Doped Ceria for Catalytic CO Oxidation. Topics in Catalysis, 2020, 63, 86-98.	2.8	8
11	Bimetallic Nanostructured Catalysts Prepared by Laser Electrodispersion: Structure and Activity in Redox Reactions. ChemCatChem, 2020, 12, 4396-4405.	3.7	12
12	Modification of Ni/Al2O3 catalyst with Pd nanoparticles for selective phenylacetylene semihydrodenation. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 883-898.	1.7	2
13	Cobalt–carbon nanocomposite catalysts of gas-phase hydrodechlorination of chlorobenzene. Applied Surface Science, 2019, 463, 395-402.	6.1	14
14	Carbon-Supported Palladium–Cobalt Catalysts in Chlorobenzene Hydrodechlorination. Russian Journal of Physical Chemistry A, 2019, 93, 1986-2002.	0.6	5
15	Multiphase Hydrodechlorination of 1,3,5-Trichlorobenzene on Palladium Catalysts Supported on Alumina: Effect of the Support Properties and Modification by Heteropoly Acid Based on Silicon and Tungsten. Kinetics and Catalysis, 2019, 60, 297-314.	1.0	2
16	Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation. Applied Surface Science, 2019, 485, 432-440.	6.1	33
17	Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631.	1.9	39

Advanced Size-Selected Catalysts Prepared by Laser Electrodispersion. , 2019, , 61-97.

2

#	Article	IF	CITATIONS
19	Chlorobenzene hydrodechlorination on bimetallic catalysts prepared by laser electrodispersion of NiPd alloy. Pure and Applied Chemistry, 2018, 90, 1685-1701.	1.9	14
20	The effect of H 2 treatment at 423–573 K on the structure and synergistic activity of Pd–Cu alloy catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2017, 208, 116-127.	20.2	33
21	Peculiarities of the structure and catalytic behavior of nanostructured Ni catalysts prepared by laser electrodispersion. Nanotechnologies in Russia, 2017, 12, 19-26.	0.7	9
22	Promoting effect of potassium and calcium additives to cerium–zirconium oxide catalysts for the complete oxidation of carbon monoxide. Kinetics and Catalysis, 2017, 58, 585-592.	1.0	10
23	Sawdust as an effective biotemplate for the synthesis of Ce _{0.8} Zr _{0.2} O ₂ and CuO–Ce _{0.8} Zr _{0.2} O ₂ catalysts for total CO oxidation. RSC Advances. 2017. 7. 51359-51372.	3.6	13
24	Disposal of Chlorine-Containing Wastes. , 2016, , 559-584.		2
25	The role of metal–support interaction in catalytic activity of nanodiamond-supported nickel in selective phenylacetylene hydrogenation. Journal of Catalysis, 2016, 344, 90-99.	6.2	49
26	Catalysis of carbon monoxide oxidation with oxygen in the presence of palladium nanowires and nanoparticles. High Energy Chemistry, 2016, 50, 292-297.	0.9	15
27	Catalytic properties of Ce x Zr1–x O2 prepared using a template in the oxidation of CO. Russian Journal of Physical Chemistry A, 2016, 90, 2157-2164.	0.6	7
28	Effect of hydrothermal treatment on the physicochemical characteristics of Pd/C composites prepared via pyrolysis of sawdust impregnated with palladium nitrate. Russian Chemical Bulletin, 2016, 65, 2618-2627.	1.5	5
29	Effective Pd/C catalyst for chlorobenzene and hexachlorobenzene hydrodechlorination by direct pyrolysis of sawdust impregnated with palladium nitrate. Catalysis Communications, 2016, 77, 37-41.	3.3	13
30	Chlorobenzene hydrodechlorination catalyst prepared via the pyrolysis of sawdust impregnated with palladium nitrate. Kinetics and Catalysis, 2015, 56, 764-773.	1.0	14
31	Adsorption and oxidation of carbon monoxide on Au and Ni nanoparticles deposited on Al2O3 by laser electrodispersion. Russian Chemical Bulletin, 2015, 64, 812-818.	1.5	16
32	Catalysts based on PdO_ZrO2 in the hydrodechlorination reaction of chlorobenzene. Russian Journal of Physical Chemistry A, 2015, 89, 1163-1172.	0.6	2
33	Application of Au–Cu nanowires fabricated by laser ablation in superfluid helium as catalysts for CO oxidation. Gold Bulletin, 2015, 48, 119-125.	2.4	16
34	The effect of metal deposition order on the synergistic activity of Au–Cu and Au–Ce metal oxide catalysts for CO oxidation. Applied Catalysis B: Environmental, 2015, 168-169, 303-312.	20.2	51
35	New type of organic/gold nanohybrid material: Preparation, properties and application in catalysis. Applied Surface Science, 2015, 325, 73-78.	6.1	9
36	Nickel-supported metal-carbon nanocomposites: New catalysts of hydrogenation of phenylacetylene. Russian Journal of Physical Chemistry A, 2014, 88, 12-16.	0.6	11

#	Article	IF	CITATIONS
37	Activity of Au, Ni, and Au-Ni catalysts in the water-gas shift reaction and carbon monoxide oxidation. Kinetics and Catalysis, 2014, 55, 311-318.	1.0	22
38	Phenylacetylene hydrogenation on Fe@C and Ni@C core–shell nanoparticles: About intrinsic activity of graphene-like carbon layer in H2 activation. Carbon, 2014, 74, 291-301.	10.3	69
39	Hydrodechlorination of chlorobenzene in the presence of Ni/Al2O3 prepared by laser electrodispersion and from a colloidal dispersion. Kinetics and Catalysis, 2013, 54, 597-606.	1.0	22
40	Selective hydrogenation of phenylacetylene on Ni and Ni-Pd catalysts modified with heteropoly compounds of the Keggin type. Russian Journal of Physical Chemistry A, 2012, 86, 1800-1807.	0.6	12
41	Hydrodechlorination of chlorobenzene on Ni and Ni-Pd catalysts modified by heteropolycompounds of the Keggin type. Russian Journal of Physical Chemistry A, 2012, 86, 1669-1675.	0.6	8
42	Laser electrodispersion as a new chlorine-free method for the production of highly effective metal-containing supported catalysts. Pure and Applied Chemistry, 2012, 84, 495-508.	1.9	26
43	Ultradispersed diamond as an excellent support for Pd and Au nanoparticle based catalysts for hydrodechlorination and CO oxidation. Diamond and Related Materials, 2011, 20, 960-964.	3.9	15
44	Ultradispersed diamond as a new carbon support for hydrodechlorination catalysts. Kinetics and Catalysis, 2011, 52, 145-155.	1.0	18
45	Thermochemical properties of lithium cobaltate. Russian Journal of Physical Chemistry A, 2011, 85, 357-363.	0.6	9
46	ZrO2-Al2O3 binary oxides as promising supports for palladium catalysts of hydrodechlorination. Russian Journal of Physical Chemistry A, 2011, 85, 402-407.	0.6	8
47	Regeneration of Pd/TiO2 catalyst deactivated in reductive CCl4 transformations by the treatment with supercritical CO2, ozone in supercritical CO2 or oxygen plasma. Journal of Supercritical Fluids, 2011, 58, 263-271.	3.2	21
48	Paramagnetic centers in detonation nanodiamonds studied by CW and pulse EPR. Chemical Physics Letters, 2010, 493, 319-322.	2.6	21
49	Role of deposition technique and support nature on the catalytic activity of supported gold clusters: experimental and theoretical study. Studies in Surface Science and Catalysis, 2010, 175, 297-300.	1.5	3
50	Metal-carbon nanocomposite systems as stable and active catalysts for chlorobenzene transformations. Studies in Surface Science and Catalysis, 2010, 175, 289-292.	1.5	2
51	Development and design of Pd-containing supported catalysts for hydrodechlorination. Studies in Surface Science and Catalysis, 2010, , 293-296.	1.5	6
52	TEM and XRD investigation of Pd on ultradispersed diamond, correlation with catalytic activity. Mendeleev Communications, 2009, 19, 133-135.	1.6	19
53	The hydrodechlorination of chlorobenzene in the vapor phase in the presence of metal-carbon nanocomposites based on nickel, palladium, and iron. Russian Journal of Physical Chemistry A, 2009, 83, 1300-1306.	0.6	28
54	High catalytic activity and stability of palladium nanoparticles prepared by the laser electrodispersion method in chlorobenzene hydrodechlorination. Kinetics and Catalysis, 2008, 49, 748-755.	1.0	30

#	Article	IF	CITATIONS
55	Heterogeneous catalysts and process for reductive dechlorination of polychlorinated hydrocarbons. Pure and Applied Chemistry, 2007, 79, 1905-1914.	1.9	9
56	Palladium on ultradisperse diamond and activated carbon: the relation between structure and activity in hydrodechlorination. Russian Journal of Physical Chemistry A, 2007, 81, 866-873.	0.6	24
57	The role of Fe addition on the activity of Pd-containing catalysts in multiphase hydrodechlorination. Applied Catalysis A: General, 2006, 302, 32-41.	4.3	52
58	Hydrodechlorination of Tetrachloromethane in the Vapor Phase in the Presence of Pd–Fe/Sibunit Catalysts. Kinetics and Catalysis, 2004, 45, 183-188.	1.0	15
59	Modification of the supported palladium catalysts surface during hydrodechlorination of carbon tetrachloride. Applied Catalysis A: General, 2003, 241, 123-132.	4.3	35
60	C-C bond formation during hydrodechlorination of CCl4 on Pd-containing catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1997-2002.	1.5	17
61	Formation of C1–C5 Hydrocarbons from CCl4 in the Presence of Carbon-Supported Palladium Catalysts. Kinetics and Catalysis, 2000, 41, 776-781.	1.0	17