Haktan Altinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892930/publications.pdf

Version: 2024-02-01

1307594 1281871 11 176 7 11 citations g-index h-index papers 11 11 11 343 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of a Novel Aspect of Tissue Scarring Following Experimental Spinal Cord Injury and the Implantation of Bioengineered Type-I Collagen Scaffolds in the Adult Rat: Involvement of Perineurial-like Cells?. International Journal of Molecular Sciences, 2022, 23, 3221.	4.1	1
2	A novel in vitro assay for peripheral nerve-related cell migration that preserves both extracellular matrix-derived molecular cues and nanofiber-derived topography. Journal of Neuroscience Methods, 2021, 361, 109289.	2.5	4
3	Nanofibers and Nanostructured Scaffolds for Nervous System Lesions. Neuromethods, 2021, , 61-101.	0.3	2
4	Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury. Biomedical Materials (Bristol), 2020, 15, 015012.	3.3	12
5	Fibroadhesive scarring of grafted collagen scaffolds interferes with implant–host neural tissue integration and bridging in experimental spinal cord injury. International Journal of Energy Production and Management, 2019, 6, 75-87.	3.7	17
6	Cell-enrichment with olfactory ensheathing cells has limited local extra beneficial effects on nerve regeneration supported by the nerve guide Perimaix. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2125-2137.	2.7	7
7	Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix. European Journal of Medical Research, 2017, 22, 34.	2.2	43
8	Characterisation of cell–substrate interactions between Schwann cells and threeâ€dimensional fibrin hydrogels containing orientated nanofibre topographical cues. European Journal of Neuroscience, 2016, 43, 376-387.	2.6	25
9	Preâ€differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model. European Journal of Neuroscience, 2016, 43, 404-416.	2.6	28
10	Functional recovery not correlated with axon regeneration through olfactory ensheathing cell-seeded scaffolds in a model of acute spinal cord injury. Tissue Engineering and Regenerative Medicine, 2016, 13, 585-600.	3.7	9
11	Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Brain Research, 2014, 1585, 37-50.	2.2	28