
Nuria Izquierdo-Useros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Science Alliance, 2022, 5, e202101200.	1.3	26
2	Clinical course impacts early kinetics,magnitude, and amplitude of SARS-CoV-2 neutralizing antibodies beyond 1 year after infection. Cell Reports Medicine, 2022, 3, 100523.	3.3	18
3	Unraveling the antiviral activity of plitidepsin against SARS-CoV-2 by subcellular and morphological analysis. Antiviral Research, 2022, 200, 105270.	1.9	14
4	HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens, 2022, 11, 39.	1.2	4
5	Chronological brain lesions after SARS-CoV-2 infection in hACE2-transgenic mice. Veterinary Pathology, 2022, 59, 613-626.	0.8	37
6	An anti-SARS-CoV-2 metabolite is reduced in diabetes. Nature Metabolism, 2022, 4, 501-502.	5.1	1
7	Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Frontiers in Microbiology, 2022, 13, .	1.5	39
8	Performance of SARS-CoV-2 Antigen-Detecting Rapid Diagnostic Tests for Omicron and Other Variants of Concern. Frontiers in Microbiology, 2022, 13, .	1.5	15
9	Pigs are not susceptible to SARS oVâ€2 infection but are a model for viral immunogenicity studies. Transboundary and Emerging Diseases, 2021, 68, 1721-1725.	1.3	51
10	Outcome of hospitalized patients with COVID-19 pneumonia treated with high-dose immunoglobulin therapy in a prospective case series. Clinical Microbiology and Infection, 2021, 27, 651-652.	2.8	5
11	Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochemical and Biophysical Research Communications, 2021, 538, 187-191.	1.0	86
12	SARS-CoV-2 infection elicits a rapid neutralizing antibody response that correlates with disease severity. Scientific Reports, 2021, 11, 2608.	1.6	86
13	Dissemination of <i>Mycobacterium tuberculosis</i> is associated to a <i>SIGLEC1</i> null variant that limits antigen exchange via trafficking extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12046.	5.5	9
14	Identification of Plitidepsin as Potent Inhibitor of SARS-CoV-2-Induced Cytopathic Effect After a Drug Repurposing Screen. Frontiers in Pharmacology, 2021, 12, 646676.	1.6	40
15	Stable neutralizing antibody levels 6Âmonths after mild and severe COVID-19 episodes. Med, 2021, 2, 313-320.e4.	2.2	77
16	Previous SARS-CoV-2 Infection Increases B.1.1.7 Cross-Neutralization by Vaccinated Individuals. Viruses, 2021, 13, 1135.	1.5	17
17	Mouthwashes with CPC Reduce the Infectivity of SARS-CoV-2 Variants In Vitro. Journal of Dental Research, 2021, 100, 1265-1272.	2.5	49
18	High-dose intravenous immunoglobulins might modulate inflammation in COVID-19 patients. Life Science Alliance, 2021, 4, e202001009.	1.3	8

NURIA IZQUIERDO-USEROS

#	Article	IF	CITATIONS
19	Monitoring Natural SARS-CoV-2 Infection in Lions (Panthera leo) at the Barcelona Zoo: Viral Dynamics and Host Responses. Viruses, 2021, 13, 1683.	1.5	51
20	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	13.7	230
21	Same-day SARS-CoV-2 antigen test screening in an indoor mass-gathering live music event: a randomised controlled trial. Lancet Infectious Diseases, The, 2021, 21, 1365-1372.	4.6	73
22	SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus. Membranes, 2021, 11, 64.	1.4	0
23	Protection against reinfection with D614- or G614-SARS-CoV-2 isolates in golden Syrian hamster. Emerging Microbes and Infections, 2021, 10, 797-809.	3.0	42
24	SARS-CoV-2 interaction with Siglec-1 mediates trans-infection by dendritic cells. Cellular and Molecular Immunology, 2021, 18, 2676-2678.	4.8	36
25	First Detection of SARS-CoV-2 Delta (B.1.617.2) Variant of Concern in a Dog with Clinical Signs in Spain. Viruses, 2021, 13, 2526.	1.5	20
26	When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses, 2020, 12, 8.	1.5	25
27	Detection of SARS-CoV-2 in a cat owned by a COVID-19â^ affected patient in Spain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24790-24793.	3.3	154
28	Novel Methodology for the Detection of Enveloped Viruses. Proceedings (mdpi), 2020, 50, .	0.2	0
29	Siglec-1 Expressed on Dendritic Cells is a New Receptor Implicated in Arenavirus Uptake. Proceedings (mdpi), 2020, 50, 90.	0.2	Ο
30	Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. ELife, 2020, 9, .	2.8	31
31	Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1. Frontiers in Immunology, 2019, 10, 825.	2.2	30
32	Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nature Microbiology, 2019, 4, 1558-1570.	5.9	44
33	Proteomics study of human cord blood reticulocyte-derived exosomes. Scientific Reports, 2018, 8, 14046.	1.6	32
34	The Mathilde Krim Effect as a Way to Overcome the Matilda Effect. AIDS Research and Human Retroviruses, 2018, 34, 725-726.	0.5	0
35	Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Scientific Reports, 2017, 7, 40800.	1.6	12
36	Retroviruses As Myeloid Cell Riders: What Natural Human Siglec-1 "Knockouts―Tell Us About Pathogenesis. Frontiers in Immunology, 2017, 8, 1593.	2.2	14

#	Article	IF	CITATIONS
37	Nonhuman TRIM5 Variants Enhance Recognition of HIV-1-Infected Cells by CD8 + T Cells. Journal of Virology, 2016, 90, 8552-8562.	1.5	11
38	Identification of Siglec-1 null individuals infected with HIV-1. Nature Communications, 2016, 7, 12412.	5.8	38
39	HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology, 2015, 12, 37.	0.9	85
40	Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner. Journal of Biological Chemistry, 2015, 290, 27345-27359.	1.6	38
41	HIV-1 Capture and Transmission by Dendritic Cells: The Role of Viral Glycolipids and the Cellular Receptor Siglec-1. PLoS Pathogens, 2014, 10, e1004146.	2.1	108
42	TRIM5α Improves CD8+ T-cell Antiviral Activity and Synergize Intrinsic Restriction and Adaptive Immunity in HIV-1 Infected Cells. AIDS Research and Human Retroviruses, 2014, 30, A177-A178.	0.5	0
43	The infectious synapse formed between mature dendritic cells and CD4+T cells is independent of the presence of the HIV-1 envelope glycoprotein. Retrovirology, 2013, 10, 42.	0.9	38
44	Actin-binding Protein Drebrin Regulates HIV-1-triggered Actin Polymerization and Viral Infection. Journal of Biological Chemistry, 2013, 288, 28382-28397.	1.6	28
45	Sialyllactose in Viral Membrane Gangliosides Is a Novel Molecular Recognition Pattern for Mature Dendritic Cell Capture of HIV-1. PLoS Biology, 2012, 10, e1001315.	2.6	78
46	Siglec-1 Is a Novel Dendritic Cell Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane Gangliosides. PLoS Biology, 2012, 10, e1001448.	2.6	208
47	A non-infectious cell-based phenotypic assay for the assessment of HIV-1 susceptibility to protease inhibitors. Journal of Antimicrobial Chemotherapy, 2012, 67, 32-38.	1.3	7
48	The PDZ-adaptor protein syntenin-1 regulates HIV-1 entry. Molecular Biology of the Cell, 2012, 23, 2253-2263.	0.9	31
49	HIV-1 Capture and Antigen Presentation by Dendritic Cells: Enhanced Viral Capture Does Not Correlate with Better T Cell Activation. Journal of Immunology, 2012, 188, 6036-6045.	0.4	21
50	HIV-1 capture and antigen presentation by dendritic cells: enhanced viral capture does not correlate with better T-Cell activation. Retrovirology, 2012, 9, .	0.9	1
51	Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. Journal of Leukocyte Biology, 2012, 91, 751-758.	1.5	42
52	Exosomes and retroviruses: the chicken or the egg?. Cellular Microbiology, 2011, 13, 10-17.	1.1	71
53	Dynamic Imaging of Cellâ€Free and Cellâ€Associated Viral Capture in Mature Dendritic Cells. Traffic, 2011, 12, 1702-1713.	1.3	32
54	Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chemistry and Biology, 2010, 17, 766-775.	6.2	76

#	Article	IF	CITATIONS
55	HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?. PLoS Pathogens, 2010, 6, e1000740.	2.1	184
56	Contribution of Immunological and Virological Factors to Extremely Severe Primary HIV Type 1 Infection. Clinical Infectious Diseases, 2009, 48, 229-238.	2.9	44
57	Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood, 2009, 113, 2732-2741.	0.6	208
58	HIV transfer between CD4 T cells does not require LFA-1 binding to ICAM-1 and is governed by the interaction of HIV envelope glycoprotein with CD4. Retrovirology, 2008, 5, 32.	0.9	46
59	Expression and Functionality of Anti-Human Immunodeficiency Virus and Anticancer Drug Uptake Transporters in Immune Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 558-567.	1.3	66
60	AM3 Modulates Dendritic Cell Pathogen Recognition Capabilities by Targeting DC-SIGN. Antimicrobial Agents and Chemotherapy, 2007, 51, 2313-2323.	1.4	15
61	Maturation of Blood-Derived Dendritic Cells Enhances Human Immunodeficiency Virus Type 1 Capture and Transmission. Journal of Virology, 2007, 81, 7559-7570.	1.5	99
62	Evidence for Preferential Genotyping of a Minority Human Immunodeficiency Virus Population Due to Primer-Template Mismatching during PCR-Based Amplification. Journal of Clinical Microbiology, 2005, 43, 436-438.	1.8	3
63	Viral Evolution during Structured Treatment Interruptions in Chronically Human Immunodeficiency Virus-Infected Individuals. Journal of Virology, 2002, 76, 12344-12348.	1.5	26