Ming-Quan Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892648/publications.pdf

Version: 2024-02-01

257357 276775 2,054 77 24 41 h-index citations g-index papers 77 77 77 2522 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chemistry, 2019, 277, 706-712.	4.2	143
2	Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities. Molecules, 2016, 21, 1275.	1.7	124
3	Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids. Antioxidants, 2019, 8, 296.	2.2	108
4	Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays. Molecules, 2015, 20, 10553-10565.	1.7	100
5	Studies on Transition Metal-Quercetin Complexes Using Electrospray Ionization Tandem Mass Spectrometry. Molecules, 2015, 20, 8583-8594.	1.7	88
6	Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Marine Drugs, 2020, 18, 545.	2.2	88
7	Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Journal of Pharmaceutical Analysis, 2020, 10, 277-290.	2.4	85
8	Polarity-Tuning Derivatization-LC-MS Approach for Probing Global Carboxyl-Containing Metabolites in Colorectal Cancer. Analytical Chemistry, 2018, 90, 11210-11215.	3.2	71
9	Research advances in traditional and modern use of <i>Nelumbo nucifera</i> : phytochemicals, health promoting activities and beyond. Critical Reviews in Food Science and Nutrition, 2019, 59, S189-S209.	5.4	67
10	Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. Food Chemistry, 2020, 333, 127478.	4.2	61
11	Rapid Screening for α-Glucosidase Inhibitors from Gymnema sylvestre by Affinity Ultrafiltration–HPLC-MS. Frontiers in Pharmacology, 2017, 8, 228.	1.6	59
12	Phenolic Profiling of Duchesnea indica Combining Macroporous Resin Chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules, 2015, 20, 22463-22475.	1.7	58
13	Flavonoids of Lotus (<i>Nelumbo nucifera</i>) Seed Embryos and Their Antioxidant Potential. Journal of Food Science, 2017, 82, 1834-1841.	1.5	42
14	Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry. Phytochemical Analysis, 2018, 29, 375-386.	1.2	42
15	Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Scientific Reports, 2016, 6, 38284.	1.6	41
16	Gas chromatographic analysis of naturally occurring cannabinoids: A review of literature published during the past decade. Phytochemical Analysis, 2020, 31, 135-146.	1.2	39
17	Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chemistry, 2022, 375, 131856.	4.2	34
18	Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species. Molecules, 2015, 20, 21854-21869.	1.7	32

#	Article	IF	CITATIONS
19	Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants. Phytochemical Analysis, 2018, 29, 365-374.	1.2	30
20	Screening for anti-proliferative and anti-inflammatory components from Rhamnus davurica Pall. using bio-affinity ultrafiltration with multiple drug targets. Analytical and Bioanalytical Chemistry, 2018, 410, 3587-3595.	1.9	29
21	One-Pot Synthesis of Epirubicin-Capped Silver Nanoparticles and Their Anticancer Activity against Hep G2 Cells. Pharmaceutics, 2019, 11, 123.	2.0	29
22	Volatile fingerprints and biomarkers of three representative kiwifruit cultivars obtained by headspace solid-phase microextraction gas chromatography mass spectrometry and chemometrics. Food Chemistry, 2019, 271, 211-215.	4.2	28
23	Antioxidant, Anti-inflammatory Activities and Polyphenol Profile of Rhamnus prinoides. Pharmaceuticals, 2020, 13, 55.	1.7	27
24	Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G0/G1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	1.9	26
25	Current Advances in the Metabolomics Study on Lotus Seeds. Frontiers in Plant Science, 2016, 7, 891.	1.7	25
26	Advances in MS Based Strategies for Probing Ligand-Target Interactions: Focus on Soft Ionization Mass Spectrometric Techniques. Frontiers in Chemistry, 2019, 7, 703.	1.8	25
27	Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Proteomics, 2013, 13, 424-437.	1.3	23
28	Comparative study on alkaloids and their anti-proliferative activities from three Zanthoxylum species. BMC Complementary and Alternative Medicine, 2017, 17, 460.	3.7	23
29	In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals, 2020, 13, 59.	1.7	23
30	Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC–MS. Journal of Proteome Research, 2017, 16, 3470-3475.	1.8	22
31	Screening for Natural Inhibitors of Topoisomerases I from Rhamnus davurica by Affinity Ultrafiltration and High-Performance Liquid Chromatography–Mass Spectrometry. Frontiers in Plant Science, 2017, 8, 1521.	1.7	22
32	Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography–mass spectrometry. Journal of Chromatography A, 2016, 1440, 255-259.	1.8	20
33	Strategy for Hepatotoxicity Prediction Induced by Drug Reactive Metabolites Using Human Liver Microsome and Online 2D-Nano-LC-MS Analysis. Analytical Chemistry, 2017, 89, 13167-13175.	3.2	20
34	Cell Cycle Arrest and Apoptosis in HT-29 Cells Induced by Dichloromethane Fraction From Toddalia asiatica (L.) Lam Frontiers in Pharmacology, 2018, 9, 629.	1.6	19
35	Antioxidant and Anti-Proliferative Properties of Hagenia abyssinica Roots and Their Potentially Active Components. Antioxidants, 2020, 9, 143.	2.2	19
36	Integrated Proteomics, Biological Functional Assessments, and Metabolomics Reveal Toosendanin-Induced Hepatic Energy Metabolic Disorders. Chemical Research in Toxicology, 2019, 32, 668-680.	1.7	16

#	Article	IF	CITATIONS
37	Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochemistry Reviews, 2020, 19, 1231-1261.	3.1	16
38	Mass spectrometry based translational proteomics for biomarker discovery and application in colorectal cancer. Proteomics - Clinical Applications, 2016, 10, 503-515.	0.8	15
39	New Lignanamides with Antioxidant and Anti-Inflammatory Activities Screened Out and Identified from Warburgia ugandensis Combining Affinity Ultrafiltration LC-MS with SOD and XOD Enzymes. Antioxidants, 2021, 10, 370.	2.2	15
40	Comparative Analysis of Saponins from Different Phytolaccaceae Species and Their Antiproliferative Activities. Molecules, 2017, 22, 1077.	1.7	14
41	Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: Evidence from three years' immunotherapy. Pediatric Allergy and Immunology, 2021, 32, 1654-1662.	1.1	14
42	Screening and characterisation of potential antioxidant, hypoglycemic and hypolipidemic components revealed in <scp><i>Portulaca oleracea</i></scp> via multiâ€ŧarget affinity ultrafiltration LC–MS and molecular docking. Phytochemical Analysis, 2022, 33, 272-285.	1.2	14
43	Profiling of polyunsaturated fatty acids in human serum using off-line and on-line solid phase extraction-nano-liquid chromatography-quadrupole-time-of-flight mass spectrometry. Journal of Chromatography A, 2018, 1537, 141-146.	1.8	13
44	A review on the latest advances in extraction and analysis of artemisinin. Phytochemical Analysis, 2020, 31, 5-14.	1.2	13
45	Exploring Multifunctional Bioactive Components from Podophyllum sinense Using Multi-Target Ultrafiltration. Frontiers in Pharmacology, 2021, 12, 749189.	1.6	13
46	Enrichment and analysis of quaternary alkaloids from <scp><i>Zanthoxylum simulans</i></scp> using weak cation exchange solidâ€phase extraction coupled with LCâ€"MS. Phytochemical Analysis, 2019, 30, 727-734.	1.2	12
47	Correlations between phytochemical fingerprints of <scp><i>Moringa oleifera</i></scp> leaf extracts and their antioxidant activities revealed by chemometric analysis. Phytochemical Analysis, 2021, 32, 698-709.	1.2	12
48	Investigation of changes in endocannabinoids and N-acylethanolamides in biofluids, and their correlations with female infertility. Journal of Chromatography A, 2017, 1509, 16-25.	1.8	11
49	Comparative and chemometric analysis of correlations between the chemical fingerprints and antiâ€proliferative activities of ganoderic acids from three <i>Ganoderma</i> species. Phytochemical Analysis, 2019, 30, 474-480.	1.2	10
50	Flavonoids from Selaginella doederleinii Hieron and Their Antioxidant and Antiproliferative Activities. Antioxidants, 2022, $11,1189$.	2.2	10
51	Rapid re-evaluation of bioactive saponins from Paris polyphylla using affinity ultrafiltration-LC/MS with multiple drug targets. International Journal of Mass Spectrometry, 2018, 434, 87-92.	0.7	9
52	Characterization of covalent protein modification by triclosan in vivo and in vitro via three-dimensional liquid chromatography-mass spectrometry: New insight into its adverse effects. Environment International, 2020, 136, 105423.	4.8	9
53	Antioxidant and Antiproliferative Potentials of Ficus glumosa and Its Bioactive Polyphenol Metabolites. Pharmaceuticals, 2021, 14, 266.	1.7	9
54	Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants, 2021, 10, 652.	2.2	9

#	Article	lF	CITATIONS
55	Potential Anti-aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Frontiers in Nutrition, 2022, 9, .	1.6	9
56	Simultaneous Screening and Analysis of Anti-inflammatory and Antiproliferative Compounds from Euphorbia maculata Combining Bio-affinity Ultrafiltration with Multiple Drug Targets. Journal of Analysis and Testing, 2022, 6, 98-110.	2.5	9
57	Antiproliferative and Enzyme Docking Analysis of Engleromycin from Engleromyces goetzei. Molecules, 2019, 24, 166.	1.7	8
58	Comparing Three Different Extraction Techniques on Essential Oil Profiles of Cultivated and Wild Lotus (Nelumbo nucifera) Flower. Life, 2020, 10, 209.	1.1	8
59	Acyl Quinic Acid Derivatives Screened Out from Carissa spinarum by SOD-Affinity Ultrafiltration LC–MS and Their Antioxidative and Hepatoprotective Activities. Antioxidants, 2021, 10, 1302.	2.2	8
60	Potential Antioxidative Components in Azadirachta indica Revealed by Bio-Affinity Ultrafiltration with SOD and XOD. Antioxidants, 2022, 11, 658.	2.2	8
61	Quantitative Analysis and Comparison of Flavonoids in Lotus Plumules of Four Representative Lotus Cultivars. Journal of Spectroscopy, 2017, 2017, 1-9.	0.6	7
62	Identification of Anti-Inflammatory and Anti-Proliferative Neolignanamides from Warburgia ugandensis Employing Multi-Target Affinity Ultrafiltration and LC-MS. Pharmaceuticals, 2021, 14, 313.	1.7	7
63	Screening for inhibitors of topoisomerase I from <scp><i>Lycoris radiata</i></scp> by combining ultrafiltration with liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 95-99.	0.7	6
64	Analysis and Differentiation of the Volatile Compounds in Red and White Wines Using Desiccated Headspace Gas Chromatography-Mass Spectrometry Coupled with Chemometrics. Food Analytical Methods, 2017, 10, 3531-3537.	1.3	6
65	Solvent-saturated solid matrix technique for increasing the efficiency of headspace extraction of volatiles. Journal of Chromatography A, 2017, 1511, 9-14.	1.8	6
66	Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to GO/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants, 2021, 10, 1559.	2.2	6
67	Components and Anti-HepG2 Activity Comparison ofLycopodiumAlkaloids from Four Geographic Origins. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-9.	0.5	5
68	In-situ headspace analysis of metabolic carbon dioxide of aerobic bacteria for assessing antimicrobial activity of natural products. Journal of Chromatography A, 2019, 1600, 41-45.	1.8	5
69	Plukenetia huayllabambana Fruits: Analysis of Bioactive Compounds, Antibacterial Activity and Relative Action Mechanisms. Plants, 2020, 9, 1111.	1.6	5
70	Insecticidal Activities Against Odontotermes formosanus and Plutella xylostella and Corresponding Constituents of Tung Meal from Vernicia fordii. Insects, 2021, 12, 425.	1.0	5
71	Headspace gas chromatographic method for antimicrobial screening: Minimum inhibitory concentration determination. Journal of Pharmaceutical and Biomedical Analysis, 2020, 181, 113122.	1.4	4
72	Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance. Current Medicinal Chemistry, 2022, 29, 2109-2126.	1.2	4

#	Article	IF	CITATIONS
73	Anti-Inflammatory Properties and Potential Bioactive Components from Moringa oleifera Leaves Revealed by Affinity Ultrafiltration LC–MS and Molecular Docking. ACS Food Science & Technology, 0, , .	1.3	3
74	Inhibitors Targeting Multiple Janus Kinases From Zanthoxylum simulans Mediate Inhibition and Apoptosis Against Gastric Cancer Cells via the Estrogen Pathway. Frontiers in Chemistry, 2022, 10, .	1.8	3
75	Advances in mass spectrometry techniques applicable to phytochemical analysis. Phytochemical Analysis, 2018, 29, 329-330.	1.2	2
76	A phase conversion headspace technique for the determination of anti-anaerobic activity of drug candidate based on the metabolic acidity change in culture medium. Journal of Chromatography A, 2020, 1621, 461024.	1.8	2
77	Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis. PLoS ONE, 2022, 17, e0269045.	1.1	2