
Ning Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892636/publications.pdf Version: 2024-02-01

NINC THENC

#	Article	IF	CITATIONS
1	Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 2007, 446, 640-645.	13.7	1,367
2	Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature, 2002, 416, 703-709.	13.7	1,322
3	The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475, 353-358.	13.7	1,278
4	Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 2010, 468, 400-405.	13.7	1,192
5	Ubiquitin Ligases: Structure, Function, and Regulation. Annual Review of Biochemistry, 2017, 86, 129-157.	5.0	917
6	NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012, 486, 228-232.	13.7	834
7	Structure of a c-Cbl–UbcH7 Complex. Cell, 2000, 102, 533-539.	13.5	793
8	D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504, 406-410.	13.7	669
9	Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature, 2006, 443, 590-593.	13.7	580
10	A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nature Chemical Biology, 2012, 8, 477-485.	3.9	490
11	Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature, 2012, 486, 135-139.	13.7	435
12	Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature, 2014, 505, 56-61.	13.7	288
13	Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature, 2014, 507, 73-77.	13.7	265
14	Structural Basis of the Cks1-Dependent Recognition of p27Kip1 by the SCFSkp2 Ubiquitin Ligase. Molecular Cell, 2005, 20, 9-19.	4.5	255
15	Structure of the Cand1-Cul1-Roc1 Complex Reveals Regulatory Mechanisms for the Assembly of the Multisubunit Cullin-Dependent Ubiquitin Ligases. Cell, 2004, 119, 517-528.	13.5	254
16	Structure of DDB1 in Complex with a Paramyxovirus V Protein: Viral Hijack of a Propeller Cluster in Ubiquitin Ligase. Cell, 2006, 124, 105-117.	13.5	232
17	Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins. Cell, 2013, 153, 206-215.	13.5	228
18	Structure of the Cardiac Sodium Channel. Cell, 2020, 180, 122-134.e10.	13.5	217

#	Article	IF	CITATIONS
19	Structural assembly of cullin-RING ubiquitin ligase complexes. Current Opinion in Structural Biology, 2010, 20, 714-721.	2.6	196
20	SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature, 2013, 496, 64-68.	13.7	191
21	Structural regulation of cullin-RING ubiquitin ligase complexes. Current Opinion in Structural Biology, 2011, 21, 257-264.	2.6	184
22	A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery. Nature Structural and Molecular Biology, 2010, 17, 105-111.	3.6	180
23	Structural Basis for Assembly and Activation of the Heterotetrameric SAGA Histone H2B Deubiquitinase Module. Cell, 2010, 141, 606-617.	13.5	164
24	Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature, 2016, 537, 117-121.	13.7	162
25	VIH2 Regulates the Synthesis of Inositol Pyrophosphate InsP ₈ and Jasmonate-Dependent Defenses in Arabidopsis. Plant Cell, 2015, 27, 1082-1097.	3.1	153
26	Auxin PerceptionStructural Insights. Cold Spring Harbor Perspectives in Biology, 2010, 2, a005546-a005546.	2.3	148
27	The chemical basis for electrical signaling. Nature Chemical Biology, 2017, 13, 455-463.	3.9	147
28	Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell, 2019, 178, 993-1003.e12.	13.5	142
29	Structures of closed and open states of a voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3051-E3060.	3.3	139
30	Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature, 2018, 563, 652-656.	13.7	138
31	C-Terminal End-Directed Protein Elimination by CRL2ÂUbiquitin Ligases. Molecular Cell, 2018, 70, 602-613.e3.	4.5	123
32	Catalysis of Na ⁺ permeation in the bacterial sodium channel Na _V Ab. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11331-11336.	3.3	113
33	USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors. Molecular Cell, 2018, 72, 925-941.e4.	4.5	99
34	Structural basis of salicylic acid perception by Arabidopsis NPR proteins. Nature, 2020, 586, 311-316.	13.7	93
35	Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. ELife, 2014, 3, e03674.	2.8	90
36	Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes and Development, 2013, 27, 2531-2536.	2.7	89

#	Article	IF	CITATIONS
37	FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Molecular Cell, 2020, 78, 31-41.e5.	4.5	87
38	Structural Basis of H2B Ubiquitination-Dependent H3K4 Methylation by COMPASS. Molecular Cell, 2019, 76, 712-723.e4.	4.5	80
39	Crystal Structure of the COMPASS H3K4 Methyltransferase Catalytic Module. Cell, 2018, 174, 1106-1116.e9.	13.5	75
40	Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Research, 2013, 23, 1417-1419.	5.7	74
41	Fenestrations control resting-state block of a voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13111-13116.	3.3	74
42	Signal advance for abscisic acid. Nature, 2009, 462, 575-576.	13.7	69
43	Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics. Plant Physiology, 2015, 169, 803-813.	2.3	65
44	Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends in Biochemical Sciences, 2015, 40, 526-534.	3.7	64
45	Recognition of the Diglycine C-End Degron by CRL2KLHDC2 Ubiquitin Ligase. Molecular Cell, 2018, 72, 813-822.e4.	4.5	58
46	Structural dynamics of the human COP9 signalosome revealed by cross-linking mass spectrometry and integrative modeling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4088-4098.	3.3	58
47	GCTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nature Structural and Molecular Biology, 2019, 26, 628-636.	3.6	56
48	Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell, 2021, 184, 5151-5162.e11.	13.5	56
49	Structural basis for gating pore current in periodic paralysis. Nature, 2018, 557, 590-594.	13.7	55
50	Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. Nature Plants, 2019, 5, 742-754.	4.7	55
51	Allosteric Activation of Ubiquitin-Specific Proteases by β-Propeller Proteins UAF1 and WDR20. Molecular Cell, 2016, 63, 249-260.	4.5	54
52	Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nature Communications, 2021, 12, 128.	5.8	54
53	Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter. Frontiers in Physiology, 2015, 6, 386.	1.3	53
54	Plant ubiquitin ligases as signaling hubs. Nature Structural and Molecular Biology, 2014, 21, 293-296.	3.6	52

#	Article	IF	CITATIONS
55	Suramin inhibits cullin-RING E3 ubiquitin ligases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2011-8.	3.3	50
56	Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. ELife, 2020, 9, .	2.8	50
57	Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Research, 2014, 24, 1433-1444.	5.7	46
58	Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6–Bre1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10553-10558.	3.3	44
59	A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nature Communications, 2016, 7, 11742.	5.8	40
60	Inositol Polyphosphate Binding Specificity of the Jasmonate Receptor Complex. Plant Physiology, 2016, 171, 2364-2370.	2.3	40
61	Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin. Molecular Cell, 2021, 81, 38-48.e4.	4.5	40
62	Defining molecular glues with a dual-nanobody cannabidiol sensor. Nature Communications, 2022, 13, 815.	5.8	39
63	Structural Biology of CRL Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2020, 1217, 9-31.	0.8	38
64	Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nature Communications, 2015, 6, 10053.	5.8	36
65	Structural Basis for Diltiazem Block of a Voltage-Gated Ca ²⁺ Channel. Molecular Pharmacology, 2019, 96, 485-492.	1.0	35
66	Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3503-3508.	3.3	33
67	The conformational cycle of a prototypical voltage-gated sodium channel. Nature Chemical Biology, 2020, 16, 1314-1320.	3.9	33
68	Structure of an Inner Membrane Protein Required for PhoPQ-Regulated Increases in Outer Membrane Cardiolipin. MBio, 2020, 11, .	1.8	24
69	Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb. Journal of General Physiology, 2019, 151, 174-185.	0.9	23
70	Zinc knuckle of TAF1 is a DNA binding module critical for TFIID promoter occupancy. Scientific Reports, 2018, 8, 4630.	1.6	22
71	Two diphosphorylated degrons control c-Myc degradation by the Fbw7 tumor suppressor. Science Advances, 2022, 8, eabl7872.	4.7	22
72	Structural insights into DDA1 function as a core component of the CRL4-DDB1 ubiquitin ligase. Cell Discovery, 2018, 4, 67.	3.1	20

#	Article	IF	CITATIONS
73	The Antiresection Activity of the X Protein Encoded by Hepatitis Virus B. Hepatology, 2019, 69, 2546-2561.	3.6	20
74	Scribble co-operatively binds multiple α1D-adrenergic receptor C-terminal PDZ ligands. Scientific Reports, 2019, 9, 14073.	1.6	13
75	Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts. ELife, 2021, 10, .	2.8	12
76	A Ubiquitin-like Protein Unleashes Ubiquitin Ligases. Cell, 2008, 135, 209-211.	13.5	8
77	Degronomics: Mapping the Interacting Peptidome of a Ubiquitin Ligase Using an Integrative Mass Spectrometry Strategy. Analytical Chemistry, 2019, 91, 12775-12783.	3.2	7
78	Expression and purification of the cardiac sodium channel NaV1.5 for cryo-EM structure determination. Methods in Enzymology, 2021, 653, 89-101.	0.4	6
79	Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily. Journal of Biological Chemistry, 2021, 297, 100927.	1.6	4
80	The Structural Biology of Ubiquitin-Protein Ligases. , 2005, , 156-189.		2
81	Overview of Protein Degradation in Plant Hormone Signaling. , 2018, , 11-30.		Ο
82	The Structural Biology of Ubiquitin–Protein Ligases. , 0, , 156-189.		0