
## **Carole Daiguebonne**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892151/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structural and Luminescent Properties of Micro- and Nanosized Particles of Lanthanide Terephthalate<br>Coordination Polymers. Inorganic Chemistry, 2008, 47, 3700-3708.                                             | 1.9  | 177       |
| 2  | A Long Journey in Lanthanide Chemistry: From Fundamental Crystallogenesis Studies to Commercial<br>Anticounterfeiting Taggants. Accounts of Chemical Research, 2016, 49, 844-856.                                   | 7.6  | 148       |
| 3  | A Luminescent and Sublimable Dy <sup>III</sup> â€Based Singleâ€Molecule Magnet. Chemistry - A European<br>Journal, 2012, 18, 11379-11387.                                                                           | 1.7  | 134       |
| 4  | Synthesis, Crystal Structure, and Porosity Estimation of Hydrated Erbium Terephthalate Coordination Polymers. Inorganic Chemistry, 2006, 45, 5399-5406.                                                             | 1.9  | 131       |
| 5  | In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous<br>europium–organic framework capable of selective sensing of small molecules. CrystEngComm, 2010,<br>12, 4372.            | 1.3  | 121       |
| 6  | Brightness and Color Tuning in a Series of Lanthanide-Based Coordination Polymers with<br>Benzene-1,2,4,5-tetracarboxylic Acid as a Ligand. Inorganic Chemistry, 2016, 55, 794-802.                                 | 1.9  | 98        |
| 7  | Coordination Polymers Based on Heterohexanuclear Rare Earth Complexes: Toward Independent<br>Luminescence Brightness and Color Tuning. Inorganic Chemistry, 2013, 52, 6720-6730.                                    | 1.9  | 82        |
| 8  | New 3-D La(III)â^'Cu(II)-Containing Coordination Polymer with a High Potential Porosity. Inorganic<br>Chemistry, 2006, 45, 8468-8470.                                                                               | 1.9  | 80        |
| 9  | Lanthanide-Based Molecular Materials: Gel Medium Induced Polymorphism. Crystal Growth and Design, 2003, 3, 1015-1020.                                                                                               | 1.4  | 78        |
| 10 | Color and Brightness Tuning in Heteronuclear Lanthanide Terephthalate Coordination Polymers.<br>European Journal of Inorganic Chemistry, 2013, 2013, 3464-3476.                                                     | 1.0  | 76        |
| 11 | Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks. Inorganic<br>Chemistry, 2015, 54, 5213-5219.                                                                                  | 1.9  | 64        |
| 12 | Magnetic Slow Relaxation in a Metal–Organic Framework Made of Chains of Ferromagnetically<br>Coupled Singleâ€Molecule Magnets. Chemistry - A European Journal, 2018, 24, 6983-6991.                                 | 1.7  | 64        |
| 13 | Ni(II), Cu(II), and Zn(II) Dinuclear Metal Complexes with an Azaâ^'Phenolic Ligand:Â Crystal Structures,<br>Magnetic Properties, and Solution Studies. Inorganic Chemistry, 2003, 42, 348-357.                      | 1.9  | 63        |
| 14 | Syntheses, Crystal Structures, and Gas Storage Studies in New Three-Dimensional 5-Aminoisophthalate<br>Praseodymium Polymeric Complexes. Inorganic Chemistry, 2009, 48, 3976-3981.                                  | 1.9  | 62        |
| 15 | Lanthanide-Based Coordination Polymers with a 4,5-Dichlorophthalate Ligand Exhibiting Highly<br>Tunable Luminescence: Toward Luminescent Bar Codes. Inorganic Chemistry, 2018, 57, 3399-3410.                       | 1.9  | 61        |
| 16 | Influence of Photoinduced Electron Transfer on Lanthanide-Based Coordination Polymer<br>Luminescence: A Comparison between Two Pseudoisoreticular Molecular Networks. Inorganic<br>Chemistry, 2014, 53, 1217-1228.  | 1.9  | 57        |
| 17 | A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework. Applied Catalysis B: Environmental, 2016, 189, 39-50. | 10.8 | 57        |
| 18 | Luminescent coordination nanoparticles. New Journal of Chemistry, 2008, 32, 584.                                                                                                                                    | 1.4  | 56        |

2

| #  | Article                                                                                                                                                                                                                                                                                | IF                | CITATIONS                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|
| 19 | A Journey in Lanthanide Coordination Chemistry: From Evaporable Dimers to Magnetic Materials and Luminescent Devices. Accounts of Chemical Research, 2021, 54, 427-440.                                                                                                                | 7.6               | 54                       |
| 20 | Unraveling the Crystal Structure of Lanthanide–Murexide Complexes: Use of an Ancient<br>Complexometry Indicator as a Nearâ€Infraredâ€Emitting Singleâ€Ion Magnet. Chemistry - A European Journal,<br>2014, 20, 1569-1576.                                                              | 1.7               | 53                       |
| 21 | New Family of Porous Lanthanide-Containing Coordination Polymers:<br>[Ln <sub>2</sub> (C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> (H <sub>2</sub> O) <sub>6</sub> ,12H <sub>2<br/>with Ln = Laâ^Yb or Y. Crystal Growth and Design, 2010, 10, 775-781.</sub>                         | <arb>O]&lt;</arb> | sust <mark>a</mark> >â^ž |
| 22 | 1,2,4,5-Benzene-tetra-carboxylic acid: a versatile ligand for high dimensional lanthanide-based coordination polymers. CrystEngComm, 2013, 15, 1882.                                                                                                                                   | 1.3               | 52                       |
| 23 | Two isoreticular metal–organic frameworks with CdSO <sub>4</sub> -like topology: selective gas sorption and drug delivery. Dalton Transactions, 2014, 43, 17265-17273.                                                                                                                 | 1.6               | 51                       |
| 24 | A Family of Lanthanide-Based Coordination Polymers with Boronic Acid as Ligand. Inorganic Chemistry, 2015, 54, 5534-5546.                                                                                                                                                              | 1.9               | 49                       |
| 25 | Unprecedented Lanthanide-Containing Coordination Polymers Constructed from Hexanuclear<br>Molecular Building Blocks:<br>{[Ln <sub>6</sub> O(OH) <sub>8</sub> ](NO <sub>3</sub> ) <sub>2</sub> (bdc)(Hbdc) <sub>2</sub> ·2NO <sub<br>Inorganic Chemistry, 2011, 50, 2851-2858.</sub<br> | >3?/sub>/         | â∙Å€sub>2 </td           |
| 26 | Lanthanide Aminoisophthalate Coordination Polymers: A Promising System for Tunable Luminescent<br>Properties. European Journal of Inorganic Chemistry, 2011, 2011, 3705-3716.                                                                                                          | 1.0               | 46                       |
| 27 | Synthesis of New Copper Cyanide complexes via the Transformation of Organonitrile to Inorganic Cyanide. Inorganic Chemistry, 2008, 47, 5866-5872.                                                                                                                                      | 1.9               | 43                       |
| 28 | Synthesis, crystal structure and luminescent properties of new lanthanide-containing coordination polymers involving 4,4′-oxy-bis-benzoate as ligand. CrystEngComm, 2013, 15, 706-720.                                                                                                 | 1.3               | 43                       |
| 29 | Multi-Emissive Lanthanide-Based Coordination Polymers for Potential Application as Luminescent<br>Bar-Codes. Inorganic Chemistry, 2019, 58, 2659-2668.                                                                                                                                 | 1.9               | 43                       |
| 30 | Lanthanide-based hexa-nuclear complexes and their use as molecular precursors. Coordination Chemistry Reviews, 2017, 340, 134-153.                                                                                                                                                     | 9.5               | 41                       |
| 31 | A NdIIICullMolecular Material with a Honeycomb-like Structure. Inorganic Chemistry, 2001, 40, 176-178.                                                                                                                                                                                 | 1.9               | 40                       |
| 32 | Lanthanide-Based Coordination Polymers With 1,4-Carboxyphenylboronic Ligand: Multiemissive<br>Compounds for Multisensitive Luminescent Thermometric Probes. Inorganic Chemistry, 2019, 58,<br>462-475.                                                                                 | 1.9               | 40                       |
| 33 | Four three-dimensional lanthanide coordination polymer constructed from benzene-1,4-dioxydiacetic acid. Inorganica Chimica Acta, 2007, 360, 3265-3271.                                                                                                                                 | 1.2               | 38                       |
| 34 | Chiral Supramolecular Nanotubes of Singleâ€Chain Magnets. Angewandte Chemie - International<br>Edition, 2020, 59, 780-784.                                                                                                                                                             | 7.2               | 36                       |
| 35 | 3D Organization of Dysprosium Cubanes. European Journal of Inorganic Chemistry, 2013, 2013, 5879-5885.                                                                                                                                                                                 | 1.0               | 29                       |
| 36 | Characterization and Luminescence Properties of Lanthanide-Based Polynuclear Complexes<br>Nanoaggregates. Inorganic Chemistry, 2015, 54, 6043-6054.                                                                                                                                    | 1.9               | 28                       |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | High Brightness and Easy Color Modulation in Lanthanide-Based Coordination Polymers with<br>5-Methoxyisophthalate as Ligand: Toward Emission Colors Additive Strategy. Crystal Growth and<br>Design, 2017, 17, 1224-1234.          | 1.4 | 28        |
| 38 | Extending the lanthanide–terephthalate system: Isolation of an unprecedented Tb(III)-based<br>coordination polymer with high potential porosity and luminescence properties. Journal of<br>Molecular Structure, 2015, 1086, 34-42. | 1.8 | 27        |
| 39 | A New Series of Anhydrous Lanthanideâ€Based Octahedral Hexanuclear Complexes. European Journal of<br>Inorganic Chemistry, 2009, 2009, 3172-3178.                                                                                   | 1.0 | 26        |
| 40 | Re-investigation of the Er3+–C2O42––H2O system: from the classical ceramic precursor to a new nanoporous molecular material potential precursor. Comptes Rendus Chimie, 2003, 6, 405-415.                                          | 0.2 | 25        |
| 41 | A family of lanthanide-containing molecular open frameworks with high porosity: [Ln(abdc)(Habdc),<br>nH2O]â^ž with Ln=La–Eu and 8⩽n⩽11. Inorganica Chimica Acta, 2011, 368, 170-178.                                               | 1.2 | 23        |
| 42 | Lanthanide-containing coordination polymers. Fundamental Theories of Physics, 2004, 34, 359-404.                                                                                                                                   | 0.1 | 22        |
| 43 | Strong Magnetic Coupling and Single-Molecule-Magnet Behavior in Lanthanide-TEMPO Radical Chains.<br>Inorganic Chemistry, 2018, 57, 11044-11057.                                                                                    | 1.9 | 22        |
| 44 | Highly Luminescent Europium-Based Heteroleptic Coordination Polymers with Phenantroline and Glutarate Ligands. Inorganic Chemistry, 2021, 60, 3707-3718.                                                                           | 1.9 | 22        |
| 45 | Structural and Nearâ€IR Luminescent Properties of Erbium ontaining Coordination Polymers. European<br>Journal of Inorganic Chemistry, 2009, 2009, 4491-4497.                                                                       | 1.0 | 21        |
| 46 | Rational Design of Dual IR and Visible Highly Luminescent Light-Lanthanides-Based Coordination<br>Polymers. Inorganic Chemistry, 2020, 59, 10673-10687.                                                                            | 1.9 | 21        |
| 47 | Lanthanide-based hexanuclear complexes usable as molecular precursors for new hybrid materials.<br>Comptes Rendus Chimie, 2010, 13, 715-730.                                                                                       | 0.2 | 20        |
| 48 | Effect of multiphasic structure of binder particles on the mechanical properties of a gypsum-based material. Construction and Building Materials, 2016, 102, 175-181.                                                              | 3.2 | 20        |
| 49 | Temperature identification on two 3D Mn(ii) metal–organic frameworks: syntheses, adsorption and<br>magnetism. RSC Advances, 2014, 4, 20605.                                                                                        | 1.7 | 19        |
| 50 | Microcrystalline Core–Shell Lanthanide-Based Coordination Polymers for Unprecedented<br>Luminescent Properties. Inorganic Chemistry, 2019, 58, 1317-1329.                                                                          | 1.9 | 18        |
| 51 | Hexalanthanide Complexes as Molecular Precursors: Synthesis, Crystal Structure, and Luminescent and Magnetic Properties. Inorganic Chemistry, 2017, 56, 14632-14642.                                                               | 1.9 | 15        |
| 52 | Hetero-hexalanthanide Complexes: A New Synthetic Strategy for Molecular Thermometric Probes.<br>Inorganic Chemistry, 2019, 58, 16180-16193.                                                                                        | 1.9 | 12        |
| 53 | The first two lanthanum-containing coordination polymers involving<br>naphthalene-1,4,5,8-tetra-carboxylate as ligand. Inorganica Chimica Acta, 2009, 362, 1478-1484.                                                              | 1.2 | 11        |
| 54 | High Luminance of Heterolanthanide-Based Molecular Alloys by Phase-Induction Strategy. Inorganic<br>Chemistry, 2020, 59, 11028-11040.                                                                                              | 1.9 | 11        |

| #  | Article                                                                                                                                                                                                               | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sonocrystallization as an Efficient Way to Control the Size, Morphology, and Purity of Coordination<br>Compound Microcrystallites: Application to a Single-Chain Magnet. Inorganic Chemistry, 2020, 59,<br>9215-9226. | 1.9 | 11        |
| 56 | Structure and magnetic properties of Ln2[Cu(opba)]3(DMSO)6(H2O)·(H2O) compounds with LnLa–Lu<br>exhibiting ladder-like molecular motifs. Inorganica Chimica Acta, 2005, 358, 3246-3252.                               | 1.2 | 10        |
| 57 | Luminescence properties of lanthanide complexes-based molecular alloys. Inorganica Chimica Acta, 2020, 501, 119309.                                                                                                   | 1.2 | 10        |
| 58 | Nanometrization of Lanthanideâ€Based Coordination Polymers. Chemistry - A European Journal, 2015, 21,<br>17466-17473.                                                                                                 | 1.7 | 9         |
| 59 | Closing the Circle of the Lanthanide-Murexide Series: Single-Molecule Magnet Behavior and Near-Infrared Emission of the NdIII Derivative. Magnetochemistry, 2018, 4, 44.                                              | 1.0 | 9         |
| 60 | Colloidal suspensions of highly luminescent lanthanide-based coordination polymer molecular<br>alloys for ink-jet printing and tagging of technical liquids. Inorganic Chemistry Frontiers, 2021, 8,<br>2125-2135.    | 3.0 | 9         |
| 61 | A new calcium sulfate-based plaster composed of composite particles. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2685-2696.                                                                        | 1.3 | 8         |
| 62 | Single-chain magnet behavior in a finite linear hexanuclear molecule. Chemical Science, 2021, 12,<br>10613-10621.                                                                                                     | 3.7 | 7         |
| 63 | Rational engineering of dimeric Dy-based Single-Molecule Magnets for surface grafting. Polyhedron, 2019, 164, 41-47.                                                                                                  | 1.0 | 6         |
| 64 | A new series of lanthanide-based complexes with a bis(hydroxy)benzoxaborolone ligand: synthesis, crystal structure, and magnetic and optical properties. CrystEngComm, 2020, 22, 2020-2030.                           | 1.3 | 6         |
| 65 | Lanthanide-based molecular alloys with hydroxyterephthalate: a versatile system. CrystEngComm, 2021, 23, 100-118.                                                                                                     | 1.3 | 6         |
| 66 | Structural and luminescence characterizations of lanthanide-based coordination polymers involving naphthalene-1,4,5,8-tetra-carboxylate as ligand. Inorganica Chimica Acta, 2013, 401, 11-18.                         | 1.2 | 5         |
| 67 | New lanthanide-based coordination polymers with 2,5-dihydroxyterephthalate. Inorganica Chimica<br>Acta, 2021, 527, 120594.                                                                                            | 1.2 | 5         |
| 68 | Hexanuclear Molecular Precursors as Tools to Design Luminescent Coordination Polymers with<br>Lanthanide Segregation. Inorganic Chemistry, 2021, 60, 16782-16793.                                                     | 1.9 | 5         |
| 69 | Crystal structure, physico-chemical and catalytic properties of two organic–inorganic hybrid polyoxometallate-based lanthanide complexes. Polyhedron, 2016, 115, 1-8.                                                 | 1.0 | 4         |
| 70 | A new family of lanthanide-based coordination polymers with azoxybenzene-3,3′,5,5′-tetracarboxylic<br>acid as ligand. Inorganica Chimica Acta, 2019, 488, 208-213.                                                    | 1.2 | 4         |
| 71 | Lanthanide coordination polymers with 1,2-phenylenediacetate. Inorganica Chimica Acta, 2017, 461, 136-144.                                                                                                            | 1.2 | 3         |
| 72 | Self-assembly of a terbium(III) 1D coordination polymer on mica. Beilstein Journal of Nanotechnology, 2019, 10, 2440-2448.                                                                                            | 1.5 | 3         |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A new praseodymium-based coordination polymers with 1,10-phenantroline and glutarate ligands:<br>Synthesis, crystal structure and luminescent properties. Journal of Molecular Structure, 2021, 1225,<br>129164.                 | 1.8 | 3         |
| 74 | Synthesis, Crystal Structure, and Luminescence Properties of the Iso-Reticular Series of Lanthanide<br>Coordination Polymers Synthesized from Hexa-Lanthanide Molecular Precursors. Inorganic<br>Chemistry, 2022, 61, 4895-4908. | 1.9 | 3         |
| 75 | Poly[[nonaaquabis(μ-5-hydroxybenzene-1,3-dicarboxylato)(5-hydroxybenzene-1,3-dicarboxylato)dicerium(III)]<br>hexahydrate]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m181-m182.                      | 0.2 | 2         |
| 76 | Crystal structure of [Y6(μ6-O)(μ3-OH)8(H2O)24]I8·8H2O. Acta Crystallographica Section E: Structure<br>Reports Online, 2014, 70, 577-579.                                                                                         | 0.2 | 2         |
| 77 | A new 3D four-fold interpenetrated <b>dia</b> -like polymer: gas sorption and computational analyses.<br>CrystEngComm, 2014, 16, 10410-10417.                                                                                    | 1.3 | 2         |
| 78 | Poly[[octaaqua-μ <sub>4</sub> -(benzene-1,2,4,5-tetracarboxylato)-dicobalt(II)] octahydrate]. Acta<br>Crystallographica Section E: Structure Reports Online, 2013, 69, m680-m681.                                                | 0.2 | 2         |
| 79 | Microwave-assisted synthesis of lanthanide coordination polymers with 2-bromobenzoic acid as<br>ligand from hexa-lanthanide molecular precursors. Journal of Molecular Structure, 2022, 1250, 131918.                            | 1.8 | 2         |
| 80 | Poly[[hexaaquasesqui(μ-benzene-1,2,4,5-tetracarboxylato)dicopper(II)disodium] monohydrate]. Acta<br>Crystallographica Section E: Structure Reports Online, 2014, 70, m284-m285.                                                  | 0.2 | 0         |
| 81 | Synthesis and crystal structure of a new coordination polymer based on lanthanum and<br>1,4-phenylenediacetate ligands. Acta Crystallographica Section E: Crystallographic Communications,<br>2019, 75, 378-382.                 | 0.2 | 0         |