
Robert H Coker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2892074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deterioration of Lipid Metabolism Despite Fitness Improvements in Wildland Firefighters. Journal of Occupational and Environmental Medicine, 2022, 64, 385-389.	1.7	2
2	Equivalent servings of free-range reindeer promote greater net protein balance compared to commercial beef. International Journal of Circumpolar Health, 2021, 80, 1897222.	1.2	0
3	Alaska backcountry expeditionary hunting promotes rapid improvements in metabolic biomarkers in healthy males and females. Physiological Reports, 2021, 9, e14682.	1.7	4
4	Feasibility of connecting regional research programs to national multisite trials emanating from the CTSA Trial Innovation Network. Journal of Clinical and Translational Science, 2020, 4, 75-80.	0.6	0
5	Nitrogen recycling buffers against ammonia toxicity from skeletal muscle breakdown in hibernating arctic ground squirrels. Nature Metabolism, 2020, 2, 1459-1471.	11.9	20
6	Essential Amino Acid Supplement Lowers Intrahepatic Lipid despite Excess Alcohol Consumption. Nutrients, 2020, 12, 254.	4.1	4
7	Essential amino acid-enriched meal replacement promotes superior net protein balance in older, overweight adults. Clinical Nutrition, 2019, 38, 2821-2826.	5.0	13
8	Wildland Firefighting. Journal of Occupational and Environmental Medicine, 2019, 61, e91-e94.	1.7	25
9	Alaska Mountain Wilderness Ski Classic: Alterations in Caloric Expenditure and Body Composition. Wilderness and Environmental Medicine, 2018, 29, 221-225.	0.9	4
10	Weight Loss Strategies in the Elderly: A Clinical Conundrum. Obesity, 2018, 26, 22-28.	3.0	33
11	Negative Energy Balance Does Not Alter Fat-Free Mass During the Yukon Arctic Ultra—The Longest and the Coldest Ultramarathon. Frontiers in Physiology, 2018, 9, 1761.	2.8	6
12	The energy requirements and metabolic benefits of wilderness hunting in Alaska. Physiological Reports, 2018, 6, e13925.	1.7	11
13	Cardiac Autonomic Modulations and Psychological Correlates in the Yukon Arctic Ultra: The Longest and the Coldest Ultramarathon. Frontiers in Physiology, 2018, 9, 35.	2.8	22
14	Potential Influence of Follistatin and Myostatin on Body Composition during the Yukon Arctic Ultra. FASEB Journal, 2018, 32, lb252.	0.5	0
15	Metabolic Responses to the Yukon Arctic Ultra. Medicine and Science in Sports and Exercise, 2017, 49, 357-362.	0.4	22
16	The Northwest Participant and Clinical Interactions Network: Increasing opportunities for patients to participate in research across the Northwestern United States. Journal of Clinical and Translational Science, 2017, 1, 94-100.	0.6	4
17	Short term elevation in dietary protein intake does not worsen insulin resistance or lipids in older adults with metabolic syndrome: a randomized-controlled trial. BMC Nutrition, 2017, 3, .	1.6	8
18	Feasibility of Conducting a 6-Months Long Home-based Exercise Program with Protein Supplementation in Elderly Community-dwelling Individuals with Heart Failure. Journal of Physiotherapy & Physical Rehabilitation, 2017, 02, .	0.1	6

ROBERT H COKER

#	Article	IF	CITATIONS
19	Whey Protein and Essential Amino Acids Promotethe Reduction of Adipose Tissue and Increased Muscle ProteinSynthesis During Caloric Restriction-Induced Weight Loss in Elderly, Obese Individuals. , 2016, , 69-86.		0
20	Exercise Training and Insulin Resistance: A Current Review. Journal of Obesity & Weight Loss Therapy, 2015, s5, .	0.1	36
21	Bed Rest Promotes Reductions in Walking Speed, Functional Parameters, and Aerobic Fitness in Older, Healthy Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 91-96.	3.6	120
22	Nutritional Supplementation with Essential Amino Acids and Phytosterols May Reduce Risk for Metabolic Syndrome and Cardiovascular Disease in Overweight Individuals with Mild Hyperlipidemia. Journal of Endocrinology, Diabetes & Obesity, 2015, 3, .	0.7	9
23	Acute lysine supplementation does not improve hepatic or peripheral insulin sensitivity in older, overweight individuals. Nutrition and Metabolism, 2014, 11, 49.	3.0	12
24	Bed Rest Worsens Impairments in Fat and Glucose Metabolism in Older, Overweight Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69A, 363-370.	3.6	24
25	Acute lysine supplementation does not improve hepatic or peripheral insulin sensitivity in older, obese individuals (1161.7). FASEB Journal, 2014, 28, .	0.5	0
26	Bedrest and sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 7-11.	2.5	41
27	Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutrition Journal, 2012, 11, 105.	3.4	67
28	Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone. Metabolism: Clinical and Experimental, 2011, 60, 1012-1020.	3.4	49
29	Visceral Fat and Adiponectin: Associations with Insulin Resistance Are Tissue-Specific in Women. Metabolic Syndrome and Related Disorders, 2009, 7, 61-67.	1.3	12
30	Caffeine, Cycling Performance and Exogenous, CHO Oxidation. Medicine and Science in Sports and Exercise, 2009, 41, 1743.	0.4	1
31	The Impact of Exercise Training Compared to Caloric Restriction on Hepatic and Peripheral Insulin Resistance in Obesity. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4258-4266.	3.6	83
32	Influence of Exercise Intensity on Abdominal Fat and Adiponectin in Elderly Adults. Metabolic Syndrome and Related Disorders, 2009, 7, 363-368.	1.3	54
33	Prevention and treatment of type 2 diabetes: Current role of lifestyle, natural product, and pharmacological interventions. , 2008, 118, 181-191.		97
34	Aerobic exercise training versus the aetiology of insulin resistance. European Journal of Sport Science, 2008, 8, 3-14.	2.7	2
35	Fat Distribution and Glucose Metabolism in Older, Obese Men and Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1393-1401.	3.6	11
36	Comparison of insulin sensitivity assessment indices with euglycemic-hyperinsulinemic clamp data after a dietary and exercise intervention in older adults. Metabolism: Clinical and Experimental, 2006, 55, 525-532.	3.4	19

ROBERT H COKER

#	Article	IF	CITATIONS
37	Exercise-Induced Changes in Insulin Action and Glycogen Metabolism in Elderly Adults. Medicine and Science in Sports and Exercise, 2006, 38, 433-438.	0.4	69
38	Effects of an Ad Libitum, High Carbohydrate Diet and Aerobic Exercise Training on Insulin Action and Muscle Metabolism in Older Men and Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 299-304.	3.6	16
39	Glucoregulation During Exercise. Sports Medicine, 2005, 35, 575-583.	6.5	50
40	Hepatic glucose autoregulation: responses to small, non-insulin-induced changes in arterial glucose. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E269-E274.	3.5	4
41	Prior exercise and the response to insulin-induced hypoglycemia in the dog. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1128-E1138.	3.5	19
42	Prevention of Overt Hypoglycemia During Exercise: Stimulation of Endogenous Glucose Production Independent of Hepatic Catecholamine Action and Changes in Pancreatic Hormone Concentration. Diabetes, 2002, 51, 1310-1318.	0.6	17
43	The effect of insulin and glucagon on splanchnic oxygen consumption. Liver, 2002, 22, 459-466.	0.1	7
44	Stimulation of splanchnic glucose production during exercise in humans contains a glucagon-independent component. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E918-E927.	3.5	13
45	Role of carotid bodies in control of the neuroendocrine response to exercise. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E742-E748.	3.5	44
46	Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E638-E645.	3.5	19
47	Hepatic α- and β-adrenergic receptors are not essential for the increase in R _a during exercise in diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E444-E451.	3.5	8
48	Splanchnic glucagon kinetics in exercising alloxan-diabetic dogs. Journal of Applied Physiology, 1999, 86, 1626-1631.	2.5	12
49	Prior exercise increases net hepatic glucose uptake during a glucose load. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1022-E1029.	3.5	26
50	Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1122-E1129.	3.5	8
51	Role of a negative arterial-portal venous glucose gradient in the postexercise state. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1038-E1045.	3.5	9
52	Sympathetic drive to liver and nonhepatic splanchnic tissue during prolonged exercise is increased in diabetes. Metabolism: Clinical and Experimental, 1997, 46, 1327-1332.	3.4	12
53	Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise. Journal of Applied Physiology, 1997, 82, 1244-1249.	2.5	35
54	Role of hepatic α- and β-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E831-E838.	3.5	22

#	Article	IF	CITATIONS
55	Nicotine Use and Athletic Performance. Journal of Strength and Conditioning Research, 1996, 10, 279-282.	2.1	ο