
Robert Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2891509/publications.pdf Version: 2024-02-01

POREDT RDENNED

#	Article	IF	CITATIONS
1	Effects of Sublethal Organophosphate Toxicity and Anti-cholinergics on Electroencephalogram and Respiratory Mechanics in Mice. Frontiers in Neuroscience, 2022, 16, 866899.	2.8	3
2	Dequalinium chloride is an antagonists of α7 nicotinic acetylcholine receptors. European Journal of Pharmacology, 2022, 925, 175000.	3.5	2
3	Neuroprotective Roles of the Adenosine A3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury. Neurotherapeutics, 2021, 18, 2707-2721.	4.4	12
4	A Mouse Model of Repetitive Blast Traumatic Brain Injury Reveals Post-Trauma Seizures and Increased Neuronal Excitability. Journal of Neurotrauma, 2020, 37, 248-261.	3.4	38
5	Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-typeâ€) K ⁺ currents in neurons. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1256-1273.	4.3	37
6	Bis-Quinolinium Cyclophane Blockers of SK Potassium Channels Are Antagonists of M3 Muscarinic Acetylcholine Receptors. Frontiers in Pharmacology, 2020, 11, 552211.	3.5	4
7	Mechanisms associated with the antidepressant-like effects of L-655,708. Neuropsychopharmacology, 2020, 45, 2289-2298.	5.4	9
8	Integrated Wastewater Treatment Using Artificial Wetlands: A Gravel Marsh Case Study. , 2020, , 145-152.		2
9	Cataract-associated connexin 46 mutation alters its interaction with calmodulin and function of hemichannels. Journal of Biological Chemistry, 2018, 293, 2573-2585.	3.4	16
10	Voltage effects on muscarinic acetylcholine receptorâ€mediated contractions of airway smooth muscle. Physiological Reports, 2018, 6, e13856.	1.7	3
11	Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature Biomedical Engineering, 2018, 2, 497-507.	22.5	277
12	β1-Subunit of the calcium-sensitive potassium channel modulates the pulmonary vascular smooth muscle cell response to hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L265-L275.	2.9	10
13	A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of Neurophysiology, 2018, 119, 1506-1520.	1.8	17
14	Novel Drugs that Augment KCNQ (KV7, "M-Typeâ€) Potassium Channels as a Post-Event Treatment for Traumatic Brain Injury. Biophysical Journal, 2018, 114, 309a.	0.5	0
15	Downregulation of KCNMB4 expression and changes in BK channel subtype in hippocampal granule neurons following seizure activity. PLoS ONE, 2017, 12, e0188064.	2.5	21
16	SK Potassium Channel Antagonists As Novel Bronchodilators. Journal of Allergy and Clinical Immunology, 2016, 137, AB190.	2.9	0
17	Knockout of the BK β ₄ -subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability. Journal of Neurophysiology, 2016, 116, 456-465.	1.8	35
18	Knockout of the BK β2 subunit reveals the importance of accessorizing your channel. Journal of General Physiology, 2014, 144, 351-356.	1.9	8

ROBERT BRENNER

#	Article	IF	CITATIONS
19	Current understanding of iberiotoxin-resistant BK channels in the nervous system. Frontiers in Physiology, 2014, 5, 382.	2.8	42
20	Kcnq Channels in Airway Smooth Muscle. Biophysical Journal, 2013, 104, 269a.	0.5	0
21	Functional effects of KCNQ K+ channels in airway smooth muscle. Frontiers in Physiology, 2013, 4, 277.	2.8	23
22	Assessment of Airway Hyperresponsiveness in Murine Tracheal Rings. Methods in Molecular Biology, 2013, 1032, 257-269.	0.9	2
23	In vitro Measurements of Tracheal Constriction Using Mice. Journal of Visualized Experiments, 2012, , .	0.3	12
24	Regulation of Airway Smooth Muscle Contraction by KV7 (M-Type) K+ Channels. Biophysical Journal, 2012, 102, 678a.	0.5	0
25	Potassium Channelopathies of Epilepsy. , 2012, , 688-701.		11
26	The Brain-Specific Beta4 Subunit Downregulates BK Channel Cell Surface Expression. PLoS ONE, 2012, 7, e33429.	2.5	54
27	Structure-Function Studies of the Large Conductance Voltage-and Calcium-Activated Potassium Channel BETA1 Auxiliary Subunit. Biophysical Journal, 2011, 100, 583a.	0.5	0
28	BK Channels Regulate Contraction Secondary to M2 Muscarinic Acetylcholine Receptor Mediated Depolarization. Biophysical Journal, 2011, 100, 289a.	0.5	0
29	Shaping of action potentials by type I and type II large-conductance Ca2+-activated K+ channels. Neuroscience, 2011, 192, 205-218.	2.3	56
30	Modulation by the BK accessory β4 subunit of phosphorylation-dependent changes in excitability of dentate gyrus granule neurons. European Journal of Neuroscience, 2011, 34, 695-704.	2.6	20
31	BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization. Journal of Physiology, 2011, 589, 1803-1817.	2.9	32
32	Potassium channelopathies of epilepsy. Epilepsia, 2010, 51, 60-60.	5.1	3
33	Mechanism of Increased BK Channel Activation from a Channel Mutation that Causes Epilepsy. Journal of General Physiology, 2009, 133, 283-294.	1.9	70
34	ION CHANNELS Proepileptic Effects of BK Channel Gene Mutations. , 2009, , 662-669.		1
35	Mechanism Of Increased Bk Channel Activation From A Channel Mutation That Causes Epilepsy. Biophysical Journal, 2009, 96, 381a.	0.5	0
36	BK Potassium Channel Mutations Affecting Neuronal Function and Epilepsy. Neuromethods, 2009, , 87-106.	0.3	0

ROBERT BRENNER

#	Article	IF	CITATIONS
37	An african-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity. Human Molecular Genetics, 2008, 17, 2681-2690.	2.9	64
38	Identification and localization of BK-Î ² subunits in the distal nephron of the mouse kidney. American Journal of Physiology - Renal Physiology, 2007, 293, F350-F359.	2.7	66
39	Regulation of STREX exon large conductance, calcium-activated potassium channels by the β4 accessory subunit. Neuroscience, 2007, 149, 789-803.	2.3	36
40	An S6 Mutation in BK Channels Reveals β1 Subunit Effects on Intrinsic and Voltage-dependent Gating. Journal of General Physiology, 2006, 128, 731-744.	1.9	44
41	Hydraulically coupled microejection technique for precise local solution delivery in tissues. Journal of Neuroscience Methods, 2006, 155, 231-240.	2.5	7
42	Mechanism of β4 Subunit Modulation of BK Channels. Journal of General Physiology, 2006, 127, 449-465.	1.9	99
43	BK channel β1-subunit regulation of calcium handling and constriction in tracheal smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L802-L810.	2.9	45
44	BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nature Neuroscience, 2005, 8, 1752-1759.	14.8	321
45	Vasoregulation at the Molecular Level A Role for the β1 Subunit of the Calcium-Activated Potassium (BK) Channel. Trends in Cardiovascular Medicine, 2002, 12, 78-82.	4.9	52
46	Complementation of Physiological and Behavioral Defects by a Slowpoke Ca2+ -Activated K+ Channel Transgene. Journal of Neurochemistry, 2002, 75, 1310-1319.	3.9	25
47	β1â€Subunit of the Ca 2+ â€activated K + channel regulates contractile activity of mouse urinary bladder smooth muscle. Journal of Physiology, 2001, 537, 443-452.	2.9	134
48	Molecular Separation of Two Behavioral Phenotypes by a Mutation Affecting the Promoters of a Ca-Activated K Channel. Journal of Neuroscience, 2000, 20, 2988-2993.	3.6	45
49	Cloning and Functional Characterization of Novel Large Conductance Calcium-activated Potassium Channel β Subunits, hKCNMB3 and hKCNMB4. Journal of Biological Chemistry, 2000, 275, 6453-6461.	3.4	434
50	Vasoregulation by the \hat{l}^21 subunit of the calcium-activated potassium channel. Nature, 2000, 407, 870-876.	27.8	772
51	Behavioral and Electrophysiological Analysis of Ca-activated K-channel Transgenes in Drosophilaa. Annals of the New York Academy of Sciences, 1998, 860, 296-305.	3.8	19
52	Calcium-Activated Potassium Channel Gene Expression in the Midgut of Drosophila. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 411-420.	1.6	20
53	Novel embryonic regulation of Ca2+-activated K+ channel expression inDrosophila. Invertebrate Neuroscience, 1997, 2, 283-291.	1.8	9
54	Developmental- and Eye-Specific Transcriptional Control Elements in an Intronic Region of a Ca 2+ -Activated K + Channel Gene. Developmental Biology, 1996, 177, 536-543.	2.0	19

ROBERT BRENNER

#	Article	IF	CITATIONS
55	Tissue-specific expression of a Drosophila calcium-activated potassium channel. Journal of Neuroscience, 1995, 15, 6250-6259.	3.6	58
56	Structure and functional expression of $\hat{l}\pm 1$, $\hat{l}\pm 2$, and \hat{l}^2 subunits of a novel human neuronal calcium channel subtype. Neuron, 1992, 8, 71-84.	8.1	513
57	Performance of a clay-alum flocculation (CCBA) process for virus removal from municipal wastewater. Water Research, 1988, 22, 1449-1454.	11.3	6
58	Sequence and Expression of mRNAs Encoding the α1 and α2 Subunits of a DHP-Sensitive Calcium Channel. Science, 1988, 241, 1661-1664.	12.6	565