Michael M Lerner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/289116/publications.pdf

Version: 2024-02-01

201674 214800 2,328 65 27 47 h-index citations g-index papers 65 65 65 2532 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chemistry of Materials, 1993, 5, 835-838.	6.7	296
2	Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 2015, 1, 516-522.	11.3	202
3	Mg-Ion Battery Electrode: An Organic Solid's Herringbone Structure Squeezed upon Mg-Ion Insertion. Journal of the American Chemical Society, 2017, 139, 13031-13037.	13.7	161
4	Preparation and Characterization of Nanocomposites of Polyethers and Molybdenum Disulfide. Chemistry of Materials, 1994, 6, 207-210.	6.7	132
5	A Hydrocarbon Cathode for Dual-Ion Batteries. ACS Energy Letters, 2016, 1, 719-723.	17.4	124
6	Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents. Materials Research Bulletin, 1999, 34, 363-372.	5.2	83
7	Thermal Characterization of Poly(styrene sulfonate)/Layered Double Hydroxide Nanocomposites. Clays and Clay Minerals, 1997, 45, 194-202.	1.3	78
8	Electrochemical Characterization of a Polypyrrole/Montmorillonite Nanocomposite. Journal of the Electrochemical Society, 1997, 144, 3739-3743.	2.9	74
9	Preparation and Characterization of a Tetrabutylammonium Graphite Intercalation Compound. Journal of the American Chemical Society, 2011, 133, 12436-12438.	13.7	72
10	A direct recycling case study from a lithium-ion battery recall. Sustainable Materials and Technologies, 2020, 25, e00152.	3.3	62
11	Reversible Insertion of l–Cl Interhalogen in a Graphite Cathode for Aqueous Dual-Ion Batteries. ACS Energy Letters, 2021, 6, 459-467.	17.4	54
12	Rapid and Quantitative Displacement of Poly(ethylene oxide) from MnPS3and Other Layered Hosts. Chemistry of Materials, 1996, 8, 2016-2022.	6.7	48
13	The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate. Carbon, 2010, 48, 3205-3210.	10.3	44
14	Reversible Insertion of Mgâ€Cl Superhalides in Graphite as a Cathode for Aqueous Dualâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 19924-19928.	13.8	39
15	Preparation of nanocomposites of linear poly(ethylenimine) with layered hosts. Materials Research Bulletin, 1996, 31, 1513-1520.	5.2	38
16	Preparation of layered nanocomposites of PEO with MnPS3, CdPS3, and MoO3 by melt intercalation. Materials Research Bulletin, 2000, 35, 325-331.	5.2	37
17	Electrochemical Preparation of Graphite Bis(trifluoromethanesulfonyl) Imide. Journal of the Electrochemical Society, 2001, 148, D83.	2.9	36
18	Synthesis and Characterization of Low-Generation Polyamidoamine (PAMAM) Dendrimer–Sodium Montmorillonite (Na-MMT) Clay Nanocomposites. Inorganic Chemistry, 2013, 52, 4603-4610.	4.0	35

#	Article	IF	Citations
19	Preparation, Characterization, and Exfoliation of Graphite Perfluorooctanesulfonate. Chemistry of Materials, 1996, 8, 257-263.	6.7	34
20	Preparation of nanocomposites of poly(ethylene oxide) with TiS2. Solid State Communications, 1995, 94, 533-537.	1.9	33
21	Editors' Choiceâ€"Mechanistic Elucidation of Anion Intercalation into Graphite from Binary-Mixed Highly Concentrated Electrolytes via Complementary ¹⁹ F MAS NMR and XRD Studies. Journal of the Electrochemical Society, 2020, 167, 140526.	2.9	31
22	Synthesis and luminescence properties of a poly(p-phenylenevinylene)/montmorillonite layered nanocomposite. Applied Clay Science, 1999, 15, 109-118.	5.2	30
23	Preparation of a Homologous Series of Graphite Alkylamine Intercalation Compounds Including an Unusual Parallel Bilayer Intercalate Arrangement. Chemistry of Materials, 2011, 23, 1091-1095.	6.7	30
24	Electrochemical Oxidation of Graphite in Organic Electrolytes Containing  PF 6  â^  or ClO4 †the Electrochemical Society, 1993, 140, 742-746.	‰ậ̂. '. Jour	mal of
25	Chemical Synthesis of Graphite Perfluorooctanesulfonate Using K2MnF6 in Hydrofluoric Acid or Mixed Acid Solutions. Chemistry of Materials, 1999, 11, 1100-1109.	6.7	29
26	Preparation of a Homologous Series of Tetraalkylammonium Graphite Intercalation Compounds. Inorganic Chemistry, 2013, 52, 7139-7144.	4.0	29
27	Formation of a Photoluminescent Surface on nâ€Si by Irradiation Without an Externally Applied Potential. Journal of the Electrochemical Society, 1993, 140, L97-L98.	2.9	27
28	Cross-linking poly(ethylene oxide) and poly[oxymethylene-oligo(oxyethylene)] with ultraviolet radiation. Journal of Applied Polymer Science, 1994, 53, 1563-1572.	2.6	27
29	Graphite intercalation compounds with large fluoroanions. Journal of Fluorine Chemistry, 2007, 128, 332-335.	1.7	24
30	Synthesis of Ternary and Quaternary Graphite Intercalation Compounds Containing Alkali Metal Cations and Diamines. Inorganic Chemistry, 2011, 50, 11676-11682.	4.0	23
31	Structural refinement of the perfluorooctanesulfonate anion and its graphite intercalation compounds. Physical Chemistry Chemical Physics, 1999, 1, 5065-5069.	2.8	22
32	A comparative structural study of ternary graphite intercalation compounds containing alkali metals and linear or branched amines. Carbon, 2012, 50, 597-602.	10.3	22
33	Preparation of Graphite Intercalation Compounds Containing Crown Ethers. Inorganic Chemistry, 2016, 55, 8281-8284.	4.0	21
34	Preparation, Characterization, and Structure Trends for Graphite Intercalation Compounds Containing Pyrrolidinium Cations. Chemistry of Materials, 2016, 28, 969-974.	6.7	21
35	Cation-directed orientation of amines in ternary graphite intercalation compounds. Carbon, 2011, 49, 1040-1042.	10.3	20
36	Study of the Poly[oxymethylene oligoâ€(oxyethylene)]/Lithium Metal Interface: Comparison of Linear, Crossâ€Linked, and Alkylated Electrolyte Films. Journal of the Electrochemical Society, 1996, 143, 1292-1297.	2.9	17

3

#	Article	IF	CITATIONS
37	Reversible Insertion of Mgâ€Cl Superhalides in Graphite as a Cathode for Aqueous Dualâ€Ion Batteries. Angewandte Chemie, 2020, 132, 20096-20100.	2.0	16
38	Electrochemical Preparation and Structural Characterization of a Graphite B[OC(CF[sub 3])[sub 2]C(O)O][sub 2][sup â~] Intercalation Compound. Journal of the Electrochemical Society, 2004, 151, J15.	2.9	15
39	Use of amine electride chemistry to prepare molybdenum disulfide intercalation compounds. RSC Advances, 2014, 4, 47121-47128.	3.6	15
40	Preparation of graphite intercalation compounds containing oligo and polyethers. Nanoscale, 2016, 8, 4608-4612.	5.6	15
41	Pillared graphite anodes for reversible sodiation. Nanotechnology, 2018, 29, 325402.	2.6	15
42	Synthesis and structural investigation of new graphite intercalation compounds containing the perfluoroalkylsulfonate anions C10F21SO3â^, C2F5OC2F4SO3â^, and C2F5(C6F10)SO3â^. Carbon, 2004, 42, 2981-2987.	10.3	14
43	Template preparation of NiPS ₃ polymer nanocomposites. RSC Advances, 2012, 2, 474-479.	3.6	14
44	[LiCl ₂] ^{â°'} Superhalide: A New Charge Carrier for Graphite Cathode of Dualâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	14
45	Preparation of a Graphite Bis(perfluoropinacolato)borate Intercalation Compound. Journal of the Electrochemical Society, 2003, 150, D169.	2.9	13
46	Structure and Dynamic Behavior of the Naâ€"Crown Ether Complex in the Graphite Layers Studied by DFT and ¹ H NMR. Journal of Physical Chemistry C, 2018, 122, 10963-10970.	3.1	12
47	A New and Facile Route Using Electride Solutions To Intercalate Alkaline Earth Ions into Graphite. Chemistry of Materials, 2018, 30, 6930-6935.	6.7	11
48	Air stability and surface passivation of acceptor-type graphite intercalation compounds. Carbon, 2000, 38, 1775-1783.	10.3	10
49	Arrangement and Dynamics of Diamine, Etheric, and Tetraalkylammonium Intercalates within Graphene or Graphite Oxide Galleries by ² H NMR. Journal of Physical Chemistry C, 2015, 119, 11763-11770.	3.1	10
50	The Electrochemical Synthesis of the Graphite Intercalation Compounds Containing Tetra-n-alkylammonium Cations. ECS Journal of Solid State Science and Technology, 2013, 2, M28-M32.	1.8	9
51	The effect of surface passivation on the preparation and stability of the graphite intercalation compounds containing tetra-n-alkylammonium cations. Carbon, 2014, 69, 582-587.	10.3	9
52	Effect of reaction time on the composition of graphite bis(trifluoromethanesulfonyl)imide. Carbon, 2007, 45, 499-504.	10.3	8
53	Chemical synthesis of graphite bis(perfluoropinacolato)borate and graphite bis(hexafluorohydroxyisobutyrato)borate intercalation compounds. Carbon, 2007, 45, 2672-2677.	10.3	6
54	Preparation and Characterization of Nanocomposites of Poly(ethylene oxide) with Layered Solids. ACS Symposium Series, 1995, , 43-54.	0.5	5

#	Article	IF	CITATIONS
55	The first synthesis of a graphite bis(oxalato)borate intercalation compound. Journal of Physics and Chemistry of Solids, 2007, 68, 394-399.	4.0	5
56	Chemical and electrochemical syntheses of a graphite fluoro-tris(pentafluoroethyl)borate intercalation compound. Carbon, 2009, 47, 1592-1597.	10.3	5
57	Graphite Intercalation by Mg Diamine Complexes. Inorganic Chemistry, 2018, 57, 8042-8045.	4.0	5
58	Reversible Mâ^'M Bonding by Alkaline Earth Metals (Mg, Ca, Sr, Ba) in Graphite Intercalation Compounds. Chemistry - A European Journal, 2020, 26, 8101-8104.	3.3	4
59	Electrochemical preparation of graphite intercalation compounds containing a cyclic amide, [CF2(CF2SO2)2N]â^'. Journal of Fluorine Chemistry, 2009, 130, 581-585.	1.7	3
60	Preparation and characterization of nanocomposites of polyamidoamine (PAMAM) dendrimers with molybdenum(VI) oxide (MoO3). Materials Chemistry and Physics, 2013, 139, 911-916.	4.0	3
61	Intercalation of imidazolium cations into graphite via ion exchange. Materials Letters, 2018, 222, 150-152.	2.6	3
62	Preparation of Nanocomposites Containing Poly(Ethylene Oxide) and MoS2, TiS2, or MoO3. Materials Research Society Symposia Proceedings, 1994, 351, 83.	0.1	2
63	Analysis of bis(trifluoromethylsulfonyl)imide-doped paramagnetic graphite intercalation compound using 19F very fast magic angle spinning nuclear magnetic resonance. Carbon, 2011, 49, 4064-4066.	10.3	2
64	Donor-type Graphite Intercalation Compounds Containing Alkali Metal Cations with Amines and Polyamines. IOP Conference Series: Materials Science and Engineering, 2011, 18, 062004.	0.6	1
65	Electrochemical Intercalation of Magnesium into Graphite Via an Ethylenediamine-Based Electrolyte. ECS Meeting Abstracts, 2021, MA2021-02, 1841-1841.	0.0	O