
ZdenÄ>k ProÅjek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2891114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Healing of Cementitious Materials via Bacteria: A Theoretical Study. Crystals, 2022, 12, 920.	2.2	2
2	Recovery of residual anhydrous clinker in finely ground recycled concrete. Resources, Conservation and Recycling, 2020, 155, 104640.	10.8	35
3	Enhancing cementitious pastes with waste marble sludge. Construction and Building Materials, 2020, 255, 119372.	7.2	31
4	Natural moisture of milled recycled concrete and influence on selected properties of the cement composite. AIP Conference Proceedings, 2020, , .	0.4	0
5	Role of lime, fly ash, and slag in cement pastes containing recycled concrete fines. Construction and Building Materials, 2019, 201, 702-714.	7.2	49
6	Hydrophobicity and resistance against microorganisms of heat and chemically crosslinked poly(vinyl) Tj ETQq0 0	0 rgBT /0 12.7	verlock 10 Ti
7	MICROSCOPIC AND PHASE ANALYSIS OF CEMENT PASTE CONTAINING WASTE MICRONIZED MARBLE POWDER. Acta Polytechnica CTU Proceedings, 2018, 15, 94-98.	0.3	0
8	Micromechanical characterization and modeling of cement pastes containing waste marble powder. Journal of Cleaner Production, 2018, 195, 1081-1090.	9.3	45
9	Microstructural Analysis of Fly Ash-Based Stabilizer for Track Bed. Key Engineering Materials, 2017, 731, 66-73.	0.4	3
10	Utilization of the waste from the marble industry for application in transport infrastructure: mechanical properties of cement pastes. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012092.	0.6	7
11	EVALUATION OF MICROMECHANICAL PROPERTIES OF CARBON FIBER FABRIC USING NANOINDETATION. Acta Polytechnica CTU Proceedings, 2017, 13, 66.	0.3	1
12	PROPERTIES AND MICROSTRUCTURE OF CEMENT PASTE INCLUDING RECYCLED CONCRETE POWDER. Acta Polytechnica, 2017, 57, 49-57.	0.6	16
13	Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012094.	0.6	15
14	DETERMINING THE ROLE OF INDIVIDUAL FLY ASH PARTICLES IN INFLUENCING THE VARIATION IN THE OVERALL PHYSICAL, MORPHOLOGICAL, AND CHEMICAL PROPERTIES OF FLY ASH. Acta Polytechnica, 2016, 56, 265-282.	0.6	3
15	Replacement of Cement with Finely Ground Recycled Concrete: Influence on Mechanical Properties. Applied Mechanics and Materials, 2016, 825, 69-72.	0.2	3
16	Cement Composite Reinforced with Synthetic Fibers: Comparison of Three-Point and Four-Point Bending Test Results. Applied Mechanics and Materials, 2016, 827, 332-335.	0.2	1
17	MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS. Acta Polytechnica, 2015, 55, 14-21.	0.6	4
18	MICROSTRUCTURE DESCRIPTION AND MICROMECHANICAL PROPERTIES OF SPRUCE WOOD. Acta Polytechnica, 2015, 55, 39-49.	0.6	9

ZdenÄ>k ProÅiek

#	Article	IF	CITATIONS
19	EFFECT OF PVA MODIFICATION ON PROPERTIES OF CEMENT COMPOSITES. Acta Polytechnica, 2015, 55, 64-75.	0.6	28
20	Composite Material Based on Cement and PVA: Evolution of Mechanical Properties during First 28 Days. Advanced Materials Research, 0, 1054, 215-220.	0.3	7
21	Mechanical Properties of Recycled Binder/Micro-Filler Cement-Based Material. Advanced Materials Research, 0, 1054, 234-237.	0.3	11
22	Micromechanical Properties of Spruce Tissues Using Static Nanoindentation and Modulus Mapping. Applied Mechanics and Materials, 0, 732, 115-118.	0.2	5
23	Non-Destructive Testing of Composite Gypsum Material Properties – Long Time Measurement. Applied Mechanics and Materials, 0, 732, 321-324.	0.2	1
24	Comparison of Modulus of Elasticity of Glued Laminated Timber. Key Engineering Materials, 0, 714, 29-32.	0.4	0
25	Influence of Finely Ground Recycled Concrete on Microstructure of Cement-Based Composite Material. Key Engineering Materials, 0, 714, 111-115.	0.4	0
26	Influence of Recycled Materials on Resulting Mechanical Properties of Cement Composites. Applied Mechanics and Materials, 0, 825, 53-56.	0.2	1
27	Relationship between Compressive Strength and Young's Modulus of Cement Paste with Recycled Concrete Powder. Key Engineering Materials, 0, 722, 254-259.	0.4	3
28	Modulus Mapping and its Use to Determine the Effect Process of Drying on the Cells of Spruce. Key Engineering Materials, 0, 714, 25-28.	0.4	1
29	Influence of the Oxygen Plasma Treatments on Surface Wettability of Glass Micro Fibers Used as Reinforcement in any Mortars. Key Engineering Materials, 0, 714, 148-151.	0.4	1
30	Effect of Microfillers on Selected Destructive and Nondestructive Mechanical Properties of Cement Mortars: Different Types of Recycled Materials. Key Engineering Materials, 0, 722, 195-200.	0.4	0
31	Influence of Waste Crushed Limestone and Waste Micronized Marble Powder on Mechanical Properties of Cement Composite. Key Engineering Materials, 0, 722, 222-227.	0.4	1
32	Mechanical Properties of Cement Composites Reinforced by Carbon Microfibers: Compressive and Bending Strength. Key Engineering Materials, 0, 722, 351-356.	0.4	4
33	Comparison of Compressive Strength and Young's Modulus of Cement Samples with Different Types of Aggregate. Key Engineering Materials, 0, 677, 207-210.	0.4	0
34	Using 2D Digital Image Analysis to Locate Position of Micro Fibers in Cross-Sections of Fiber-Reinforced Concrete. Key Engineering Materials, 0, 677, 169-174.	0.4	3
35	Testing of 3-Dimensional Stabilizing Elements for Protection of Slopes: Possibilities of <i>In Situ</i> Testing. Applied Mechanics and Materials, 0, 827, 239-242.	0.2	0
36	Composite Middle Lamella Hardness and Young's Modulus of Artificial Dried Spruce Wood by Nanoindentation. Applied Mechanics and Materials, 0, 827, 320-323.	0.2	0

Zdenä»k Proåiek

#	Article	IF	CITATIONS
37	Effect of Reinforcement on Flexural Strength and Ductility of Gypsum-Based Composites with Recycled Wires from Automobile Tires. Applied Mechanics and Materials, 0, 827, 348-351.	0.2	1
38	Influence of Recycled Concrete Composition on its Elastic Stiffness. Key Engineering Materials, 0, 677, 288-291.	0.4	4
39	The Effect of Micronized Waste Marble Powder as Partial Replacement for Cement on Resulting Mechanical Properties of Cement Pastes. Advanced Materials Research, 0, 1144, 54-58.	0.3	2
40	Mechanical Properties of Cement Composite with Material Based on Waste Marble Powder and Crushed Limestone. Advanced Materials Research, 0, 1144, 9-13.	0.3	2
41	Shrinkage of Cement Composite with Material Based on Waste Marble and Limestone. Key Engineering Materials, 0, 731, 80-85.	0.4	1
42	The Dependence of the Shrinkage of the Cement Composite with Fine Ground Recycled Concrete on its Microstructure. Key Engineering Materials, 0, 731, 103-108.	0.4	0
43	Hydration Heat Evolution of the Cement Paste with Recycled Concrete: Influence of Grain Size Distribution of Recycled Concrete Powder. Key Engineering Materials, 0, 731, 37-42.	0.4	2
44	MICRO-MECHANICAL PERFORMANCE OF CONCRETE USED AS RECYCLED RAW MATERIAL IN CEMENTITIOUS COMPOSITE. Acta Polytechnica CTU Proceedings, 0, 13, 55.	0.3	4
45	Utilization of Surface-Modified Polymer and Glass Micro-Fibers as Reinforcement in Cement Composites. Key Engineering Materials, 0, 760, 225-230.	0.4	1
46	Macroscopic and Microscopic Properties of High Performance Concrete with Partial Replacement of Cement by Fly Ash. Solid State Phenomena, 0, 292, 108-113.	0.3	6