
Jonathan D Gammell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2890313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. , 2014, , .		508
2	Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. , 2015, , .		258
3	Informed Sampling for Asymptotically Optimal Path Planning. IEEE Transactions on Robotics, 2018, 34, 966-984.	10.3	99
4	Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search. International Journal of Robotics Research, 2020, 39, 543-567.	8.5	66
5	Regionally accelerated batch informed trees (RABIT*): A framework to integrate local information into optimal path planning. , 2016, , .		54
6	Multimotion Visual Odometry (MVO): Simultaneous Estimation of Camera and Third-Party Motions. , 2018, , .		37
7	Asymptotically Optimal Sampling-Based Motion Planning Methods. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 295-318.	11.8	36
8	Adaptively Informed Trees (AIT*): Fast Asymptotically Optimal Path Planning through Adaptive Heuristics. , 2020, , .		35
9	Advanced BIT* (ABIT*): Sampling-Based Planning with Advanced Graph-Search Techniques. , 2020, , .		30
10	Surface Edge Explorer (see): Planning Next Best Views Directly from 3D Observations. , 2018, , .		21
11	The Oxford Multimotion Dataset: Multiple SE(3) Motions With Ground Truth. IEEE Robotics and Automation Letters, 2019, 4, 800-807.	5.1	21
12	Into Darkness: Visual Navigation Based on a Lidar-Intensity-Image Pipeline. Springer Tracts in Advanced Robotics, 2016, , 487-504.	0.4	15
13	A Mission Control Architecture for robotic lunar sample return as field tested in an analogue deployment to the sudbury impact structure. Advances in Space Research, 2012, 50, 1666-1686.	2.6	14
14	Adaptively Informed Trees (AIT*) and Effort Informed Trees (EIT*): Asymmetric bidirectional sampling-based path planning. International Journal of Robotics Research, 2022, 41, 390-417.	8.5	13
15	Manufacturable MEMS miniSEMs. Microelectronic Engineering, 2006, 83, 1376-1381.	2.4	9
16	Rover odometry aided by a star tracker. , 2013, , .		9
17	Navigation on the Line: Traversability Analysis and Path Planning for Extreme-Terrain Rappelling Rovers. , 2020, , .		6
18	Proactive Estimation of Occlusions and Scene Coverage for Planning Next Best Views in an		4

Unstructured Representation. , 2020, , .

#	Article	IF	CITATIONS
19	Blinded by the Light: Exploiting the Deficiencies of a Laser Rangefinder for Rover Attitude Estimation. , 2013, , .		3
20	Occlusion-Robust MVO: Multimotion Estimation Through Occlusion Via Motion Closure. , 2020, , .		2
21	The Oxford Domed Lateral Unicompartmental Knee Replacement implant: Increasing wall height reduces the risk of bearing dislocation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236, 349-355.	1.8	1
22	Application of a robotics path planning algorithm to assess the risk of mobile bearing dislocation in lateral unicompartmental knee replacement. Scientific Reports, 2022, 12, 2068.	3.3	1
23	Using a robotics path planning algorithm to assess the risk of mobile bearing dislocation in lateral unicompartmental knee replacement , 0, , .		1
24	A Proof-of-Concept, Rover-Based System for Autonomously Locating Methane Gas Sources on Mars. , 2013, , .		0
25	Autonomous Aerial Mapping and its Applications for Emergency Response. , 2022, , .		0