Tatsuo Oji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2890184/publications.pdf Version: 2024-02-01

Τλτέμο Οιι

#	Article	IF	CITATIONS
1	Structure and Absolute Configuration of Phenanthro-perylene Quinone Pigments from the Deep-Sea Crinoid Hypalocrinus naresianus. Marine Drugs, 2021, 19, 445.	4.6	6
2	Experimental neoichnology of post-autotomy arm movements of sea lilies and possible evidence of thrashing behaviour in Triassic holocrinids. Scientific Reports, 2020, 10, 15147.	3.3	5
3	Spherical carbonate concretions and deep-sea fossils in the Miocene Morozaki Group, Chita Peninsula, central Japan. Journal of the Geological Society of Japan, 2020, 126, 355-363.	0.6	1
4	Spirits of Yokokurayama: shrine of the Japanese trilobites. Geology Today, 2019, 35, 15-19.	0.9	0
5	The Paleozoic evolution of the Korean Peninsula and Japan: An introduction. Island Arc, 2019, 28, e12297.	1.1	1
6	PALEOENVIRONMENTAL AND BIOSTRATIGRAPHIC IMPLICATIONS OF ECHINODERM OSSICLES TRAPPED WITHIN BURMESE AMBER. Palaios, 2019, 34, 652-656.	1.3	5
7	Hypalocrinins, Taurine-Conjugated Anthraquinone and Biaryl Pigments from the Deep Sea Crinoid <i>Hypalocrinus naresianus</i> . Journal of Natural Products, 2019, 82, 163-167.	3.0	12
8	The paleobiogeographical significance of the Silurian and Devonian trilobites of Japan. Island Arc, 2019, 28, e12287.	1.1	6
9	Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 206-221.	2.3	19
10	Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution. Royal Society Open Science, 2018, 5, 172250.	2.4	16
11	Biogeographical and Biostratigraphical Significance of a New Middle Devonian Phacopid Trilobite from the Naidaijin Formation, Kurosegawa Terrane, Kyushu, Southwest Japan. Paleontological Research, 2018, 22, 75-90.	1.0	4
12	Carboniferous ostracods from central Honshu, Japan. Geological Magazine, 2018, 155, 98-108.	1.5	3
13	Experimental neoichnology of crawling stalked crinoids. Swiss Journal of Palaeontology, 2018, 137, 197-203.	1.7	8
14	REPLY TO COMMENT ON KATO et al. (2017) â€~â€~PALEOECOLOGY OF ECHINODERMS IN COLD SEEP ENVIRONMENTS REVEALED BY ISOTOPE ANALYSIS IN THE LATE CRETACEOUS WESTERN INTERIOR SEAWAY― Palaios, 2018, 33, 284-285.	1.3	2
15	PALEOECOLOGY OF ECHINODERMS IN COLD SEEP ENVIRONMENTS REVEALED BY ISOTOPE ANALYSIS IN THE LATE CRETACEOUS WESTERN INTERIOR SEAWAY. Palaios, 2017, 32, 218-230.	1.3	9
16	A new Burgess Shale-type deposit from the Ediacaran of western Mongolia. Scientific Reports, 2016, 6, 23438.	3.3	24
17	Dragons, brimstone and the geology of a volcanic arc on the island of the last Samurai, Kyushu, Japan. Geology Today, 2016, 32, 21-26.	0.9	1
18	<i>Lakotacrinus brezinai</i> n. gen. n. sp., a new stalked crinoid from cold methane seeps in the Upper Cretaceous (Campanian) Pierre Shale, South Dakota, United States. Journal of Paleontology, 2016, 90, 506-524.	0.8	15

Tatsuo Oji

#	Article	IF	CITATIONS
19	PUNCTUATED GROWTH OF MICROBIAL CONES WITHIN EARLY CAMBRIAN ONCOIDS, BAYAN GOL FORMATION, WESTERN MONGOLIA. Palaios, 2015, 30, 836-845.	1.3	16
20	Regeneration, predatory–prey interaction, and evolutionary history of articulate crinoids. Palaeoworld, 2015, 24, 389-392.	1.1	4
21	The Oldest Post-Palaeozoic Crinoid and Permian-Triassic Origins of the Articulata (Echinodermata). Zoological Science, 2015, 32, 211-215.	0.7	21
22	Active feeding behavior of and current modification by the sea lily Metacrinus rotundus (Echinodermata: Crinoidea). Journal of Experimental Marine Biology and Ecology, 2014, 453, 13-21.	1.5	8
23	Diachronous Increase in Early Cambrian Ichnofossil Size and Benthic Faunal Activity in Different Climatic Regions. Journal of Paleontology, 2014, 88, 331-338.	0.8	5
24	Ambiguous biogeographical patterns mask a more complete understanding of the <scp>O</scp> rdovician to <scp>D</scp> evonian evolution of <scp>J</scp> apan. Island Arc, 2014, 23, 76-101.	1.1	28
25	A New Species of <i>Doraster</i> (Echinodermata: Asteroidea) from the Lower Miocene of Central Japan: Implications for its Enigmatic Paleobiogeography. Paleontological Research, 2013, 17, 330-334.	1.0	6
26	Fixed, free, and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin. Molecular Phylogenetics and Evolution, 2013, 66, 161-181.	2.7	93
27	The occurrence of the pseudoplanktonic crinoids <i>Pentacrinites</i> and <i>Seirocrinus</i> from the Early Jurassic Toyora Group, western Japan. Paleontological Research, 2011, 15, 12-22.	1.0	3
28	Experimental Taphonomy of Benthic Chaetognaths: Implications for the Decay Process of Paleozoic Chaetognath Fossils. Paleontological Research, 2011, 15, 146-153.	1.0	8
29	Particle selection by the sea lily Metacrinus rotundus Carpenter 1884 (Echinodermata, Crinoidea). Journal of Experimental Marine Biology and Ecology, 2010, 395, 80-84.	1.5	8
30	Staging of regeneration process of an arm of the feather star <i>Oxycomanthus japonicus</i> focusing on the oralâ€aboral boundary. Developmental Dynamics, 2010, 239, 2947-2961.	1.8	11
31	Habitat Reconstruction of Oligocene Elasmobranchs from Yamaga Formation, Ashiya Group, Western Japan. Paleontological Research, 2010, 14, 69-80.	1.0	8
32	Proisocrinins Aâ^'F, Brominated Anthraquinone Pigments from the Stalked Crinoid <i>Proisocrinus ruberrimus</i> . Journal of Natural Products, 2009, 72, 2036-2039.	3.0	25
33	Discovery of Dense Aggregations of Stalked Crinoids in Izu-Ogasawara Trench, Japan. Zoological Science, 2009, 26, 406-408.	0.7	13
34	Lateral lithological and compositional variations of the Cretaceous/Tertiary deep-sea tsunami deposits in northwestern Cuba. Cretaceous Research, 2008, 29, 217-236.	1.4	22
35	Discovery of Two Rare Species of Stalked Crinoids from Okinawa Trough, Southwestern Japan, and Their Systematic and Biogeographic Implications. Zoological Science, 2008, 25, 115-121.	0.7	9
36	Development and Growth of the Feather Star Oxycomanthus japonicus to Sexual Maturity. Zoological Science, 2008, 25, 1075-1083.	0.7	25

Tatsuo Oji

#	Article	IF	CITATIONS
37	KIIMETRA MIOCENICA, A NEW GENUS AND SPECIES OF THE FAMILY CALOMETRIDAE (ECHINODERMATA:) TJ ETQO 397-404.	1 1 0.784 0.8	314 rgBT
38	Food composition of crinoids (Crinoidea: Echinodermata) in relation to stalk length and fan density: their paleoecological implications. Marine Biology, 2007, 152, 959-968.	1.5	18
39	Relay Strategy and Adaptation to a Muddy Environment in Isselicrinus (Isselicrinidae: Crinoidea). Palaios, 2005, 20, 241-248.	1.3	11
40	Early Triassic recovery of echinoderms. Comptes Rendus - Palevol, 2005, 4, 531-542.	0.2	87
41	Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: paleoecologic and paleobiogeographic implications. Paleontological Research, 2004, 8, 199-218.	1.0	28
42	Regrowth of the stalk of the Sea lily,Metacrinus rotundus (Echinodermata: Crinoidea). The Journal of Experimental Zoology, 2004, 301A, 464-471.	1.4	14
43	Larval stages of a living sea lily (stalked crinoid echinoderm). Nature, 2003, 421, 158-160.	27.8	110
44	Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology, 2003, 29, 520-526.	2.0	65
45	Autotomy and arm number increase in <i>Oxycomanthus japonicus</i> (Echinodermata, Crinoidea). Invertebrate Biology, 2003, 122, 375-379.	0.9	13
46	The Behavior and the Morphology of Sea Lilies with Shortened Stalks: Implications on the Evolution of Feather Stars. Zoological Science, 2002, 19, 961-964.	0.7	5
47	Cretaceous-Tertiary boundary sequence in the Cacarajicara Formation, western Cuba: An impact-related, high-energy, gravity-flow deposit. , 2002, , .		28
48	Complex tsunami waves suggested by the Cretaceous-Tertiary boundary deposit at the Moncada section, western Cuba. , 2002, , .		17
49	Fossil record of echinoderm regeneration with special regard to crinoids. Microscopy Research and Technique, 2001, 55, 397-402.	2.2	33
50	Origin of the Peñalver Formation in northwestern Cuba and its relation to K/T boundary impact event. Sedimentary Geology, 2000, 135, 295-320.	2.1	62
51	Retrograde community structure in the late Eocene of Antarctica. Geology, 1997, 25, 903.	4.4	57
52	Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid <i>Endoxocrinus parrae</i> (Gervais) and implications for the Mesozoic marine revolution. Paleobiology, 1996, 22, 339-351.	2.0	96
53	<i>Nielsenicrinus japonicus</i> new species (Echinodermata: Crinoidea) from the Late Cretaceous of Japan and its paleobiogeographic implications. Journal of Paleontology, 1996, 70, 964-968.	0.8	6
54	Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology, 1994, 20, 27-39.	2.0	58

ΤΑΤЅUO ΟJI

#	Article	IF	CITATIONS
55	Eocene crinoids from Seymour Island, Antarctic Peninsula: paleobiogeographic and paleoecologic implications. Journal of Paleontology, 1993, 67, 250-257.	0.8	47
56	Regeneration in sea lilies. Nature, 1992, 357, 546-547.	27.8	58
57	Middle Jurassic radiolarian fossils from the Magisawa Formation in the Taro Belt, North Kitakami Mountains. Journal of the Geological Society of Japan, 1990, 96, 239-241_1.	0.6	9
58	Photographic observations of the stalked crinoidMetacrinus rotundus carpenter in Suruga Bay, central Japan. Journal of the Oceanographical Society of Japan, 1987, 43, 333-343.	0.3	30
59	Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, Recent stalked crinoids. Lethaia, 1986, 19, 355-360.	1.4	21
60	Early Cretaceous Beachrock from the Miyako Group, Northeast Japan. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1981, 57, 362-367.	3.8	6