

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2890062/publications.pdf Version: 2024-02-01

KEVIN RI

#	Article	IF	CITATIONS
1	Bidirectional Recurrent Neural Network-Based Chemical Process Fault Diagnosis. Industrial & Engineering Chemistry Research, 2020, 59, 824-834.	3.7	63
2	An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method. Chinese Journal of Chemical Engineering, 2019, 27, 1888-1894.	3.5	34
3	Semi-supervised LSTM ladder autoencoder for chemical process fault diagnosis and localization. Chemical Engineering Science, 2022, 251, 117467.	3.8	29
4	Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace. Chinese Journal of Chemical Engineering, 2017, 25, 1091-1100.	3.5	22
5	Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling. Chinese Journal of Chemical Engineering, 2018, 26, 2562-2572.	3.5	21
6	Novel Naphtha Molecular Reconstruction Process Using a Self-Adaptive Cloud Model and Hybrid Genetic Algorithm–Particle Swarm Optimization Algorithm. Industrial & Engineering Chemistry Research, 2019, 58, 16753-16760.	3.7	19
7	Layered digraph model for HAZOP analysis of chemical processes. Process Safety Progress, 2008, 27, 293-305.	1.0	18
8	Analysis of Hopf Points for a Zymomonas mobilis Continuous Fermentation Process Producing Ethanol. Industrial & Engineering Chemistry Research, 2013, 52, 1645-1655.	3.7	18
9	Molecular reconstruction model based on structure oriented lumping and group contribution methods. Chinese Journal of Chemical Engineering, 2018, 26, 1677-1683.	3.5	17
10	Knowledge expression, numerical modeling and optimization application of ethylene thermal cracking: From the perspective of intelligent manufacturing. Chinese Journal of Chemical Engineering, 2021, 38, 1-17.	3.5	17
11	Flare Minimization during Start-Ups of an Integrated Cryogenic Separation System via Dynamic Simulation. Industrial & Engineering Chemistry Research, 2014, 53, 1553-1562.	3.7	16
12	Integrated Modeling of Transfer Learning and Intelligent Heuristic Optimization for a Steam Cracking Process. Industrial & Engineering Chemistry Research, 2020, 59, 16357-16367.	3.7	16
13	Numerical Analysis Tool for Obtaining Steady-State Solutions and Analyzing Their Stability Characteristics for Nonlinear Dynamic Systems. Journal of Chemical Engineering of Japan, 2010, 43, 394-400.	0.6	15
14	GC-MS Fingerprints Profiling Using Machine Learning Models for Food Flavor Prediction. Processes, 2020, 8, 23.	2.8	14
15	A Deep Learning Method for Yogurt Preferences Prediction Using Sensory Attributes. Processes, 2020, 8, 518.	2.8	14
16	A dynamic-inner convolutional autoencoder for process monitoring. Computers and Chemical Engineering, 2022, 158, 107654.	3.8	13
17	Shutdown Strategy for Flare Minimization at an Olefin Plant. Chemical Engineering and Technology, 2014, 37, 605-610.	1.5	12
18	Method for Regulating Oscillatory Dynamic Behavior in a <i>Zymomonas mobiliz</i> Continuous Fermentation Process. Industrial & Engineering Chemistry Research, 2014, 53, 12399-12410.	3.7	10

Κεχιν Βι

#	Article	IF	CITATIONS
19	Environmental and techno-economic analyses of bio-jet fuel produced from jatropha and castor oilseeds in China. International Journal of Life Cycle Assessment, 2021, 26, 1071-1084.	4.7	10
20	A life cycle assessment of hard carbon anodes for sodium-ion batteries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200340.	3.4	10
21	Flare Minimization Model for Ethylene Splitter System's Shutdown. Industrial & Engineering Chemistry Research, 2013, 52, 9180-9188.	3.7	9
22	An Innovative Graph Neural Network Model for Detailed Effluent Prediction in Steam Cracking. Industrial & Engineering Chemistry Research, 2021, 60, 18432-18442.	3.7	8
23	Novel Method for Considering Process Flexibility and Stability Simultaneously. Industrial & Engineering Chemistry Research, 2014, 53, 14765-14775.	3.7	5
24	Improved Resource-Task Network-Based Flare Minimization Model for Ethylene Plant Start-up: Rigorous Treatment of Cracking Furnace and High-Pressure Steam. Industrial & Engineering Chemistry Research, 2015, 54, 6326-6333.	3.7	4
25	Simulation and Optimization of Multi-period Steam Cracking Process. , 0, , .		3
26	Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS Applied Materials & amp; Interfaces, 2022, 14, 33076-33084.	8.0	3
27	Fluid dynamic numerical simulation coupled with heat transfer and reaction in the tubular reactor of industrial cracking furnaces. International Journal for Numerical Methods in Fluids, 2010, 62, 355-373.	1.6	2
28	Three-scale integrated optimization model of furnace simulation, cyclic scheduling, and supply chain of ethylene plants. Chinese Journal of Chemical Engineering, 2022, 44, 29-40.	3.5	2
29	A New Simple Effective Continuous-time Model for Scheduling of General Batch Plants Journal of Chemical Engineering of Japan, 2002, 35, 1001-1011.	0.6	1