Jana Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889995/publications.pdf

Version: 2024-02-01

331670 526287 2,046 28 21 27 citations h-index g-index papers 31 31 31 2822 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination. Neuron, 2008, 59, 392-398.	8.1	356
2	Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nature Neuroscience, 2019, 22, 1731-1742.	14.8	181
3	STIM1 Controls Neuronal Ca2+ Signaling, mGluR1-Dependent Synaptic Transmission, and Cerebellar Motor Behavior. Neuron, 2014, 82, 635-644.	8.1	162
4	Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor Coordination. Journal of Neuroscience, 2003, 23, 3469-3477.	3.6	158
5	Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I. Journal of Cell Biology, 2003, 163, 295-302.	5. 2	136
6	An assay to image neuronal microtubule dynamics in mice. Nature Communications, 2014, 5, 4827.	12.8	132
7	Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium, 2005, 37, 459-466.	2.4	88
8	Homosynaptic Long-Term Synaptic Potentiation of the "Winner―Climbing Fiber Synapse in Developing Purkinje Cells. Journal of Neuroscience, 2008, 28, 798-807.	3.6	79
9	Functional GABAAreceptors on human glioma cells. European Journal of Neuroscience, 1998, 10, 231-238.	2.6	77
10	Distinct Roles of GÂq and GÂ11 for Purkinje Cell Signaling and Motor Behavior. Journal of Neuroscience, 2004, 24, 5119-5130.	3 . 6	74
11	A novel Ca2+-dependent step in exocytosis subsequent to vesicle fusion. FEBS Letters, 1995, 363, 217-220.	2.8	66
12	Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biology, 2007, 35, 87-101.	3.2	61
13	NMDA Receptor-Dependent Synaptic Activation of TRPC Channels in Olfactory Bulb Granule Cells. Journal of Neuroscience, 2012, 32, 5737-5746.	3.6	61
14	Relations between intracellular Ca2+stores and store-operated Ca2+entry in primary cultured human glioblastoma cells. Journal of Physiology, 1998, 513, 411-424.	2.9	60
15	mGluR1/TRPC3-mediated Synaptic Transmission and Calcium Signaling in Mammalian Central Neurons. Cold Spring Harbor Perspectives in Biology, 2011, 3, a006726-a006726.	5. 5	52
16	TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 2019, 8, .	6.0	45
17	Early Onset of Ataxia in Moonwalker Mice Is Accompanied by Complete Ablation of Type II Unipolar Brush Cells and Purkinje Cell Dysfunction. Journal of Neuroscience, 2013, 33, 19689-19694.	3. 6	41
18	Two types of functionally distinct Ca2+ stores in hippocampal neurons. Nature Communications, 2019, 10, 3223.	12.8	34

#	Article	IF	Citations
19	Glutamate receptor activation can trigger electrical activity in human glioma cells. European Journal of Neuroscience, 1998, 10, 2153-2162.	2.6	31
20	Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis. Diabetes, 2017, 66, 314-324.	0.6	27
21	Mechanisms of metabotropic glutamate receptorâ€mediated synaptic signalling in cerebellar Purkinje cells. Acta Physiologica, 2009, 195, 79-90.	3.8	26
22	Abolishing cAMP sensitivity in HCN2 pacemaker channels induces generalized seizures. JCI Insight, 2019, 4, .	5.0	23
23	TRPC3â€dependent synaptic transmission in central mammalian neurons. Journal of Molecular Medicine, 2015, 93, 983-989.	3.9	21
24	Differential Regulation of Exocytotic Fusion and Granule-Granule Fusion in Eosinophils by Ca2+ and GTP Analogs. Journal of Biological Chemistry, 2003, 278, 44929-44934.	3.4	19
25	P/Qâ€type and Tâ€type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells. European Journal of Neuroscience, 2012, 35, 20-33.	2.6	18
26	Three Distinct Fusion Processes during Eosinophil Degranulation. Annals of the New York Academy of Sciences, 1994, 710, 232-247.	3.8	13
27	Where have all the Orais gone? Commentary on "Orai1 channels are essential for amplification of glutamate-evoked Ca2+ signals in dendritic spines to regulate working and associative memory― Cell Calcium, 2021, 96, 102372.	2.4	3
28	Calcium and Exocytosis. , 1998, , 199-238.		0