Jungjae Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889552/publications.pdf Version: 2024-02-01

LUNCIAE DADK

#	Article	IF	CITATIONS
1	Periodic-Error-Free All-Fiber Distance Measurement Method With Photonic Microwave Modulation Toward On-Chip-Based Devices. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-7.	4.7	5
2	Sub-100-nm precision distance measurement by means of all-fiber photonic microwave mixing. Optics Express, 2021, 29, 12229.	3.4	13
3	Optical method for simultaneous thickness measurements of two layers with a significant thickness difference. Optics Express, 2021, 29, 31615.	3.4	12
4	Precise measurement of the thickness of silicon wafers by double-sided interferometer and bilateral comparison. Metrologia, 2021, 58, 054002.	1.2	4
5	Recent Trends on a Precision Dimensional Sensor Using Optical Modulation Techniques. Journal of the Korean Society for Precision Engineering, 2021, 38, 889-896.	0.2	0
6	A novel method for simultaneous measurement of thickness, refractive index, bow, and warp of a large silicon wafer using a spectral-domain interferometer. Metrologia, 2020, 57, 064001.	1.2	11
7	Precise thickness profile measurement insensitive to spatial and temporal temperature gradients on a large glass substrate. Applied Optics, 2020, 59, 5881.	1.8	13
8	Development of Spectral-Domain Interferometer Having Dual Reference Paths based on Polarization for Measuring Absolute Distances. Journal of the Korean Society for Precision Engineering, 2020, 37, 181-186.	0.2	2
9	A Review of Thickness Measurements of Thick Transparent Layers Using Optical Interferometry. International Journal of Precision Engineering and Manufacturing, 2019, 20, 463-477.	2.2	62
10	Physical thickness and group refractive index measurement of individual layers for double-stacked microstructures using spectral-domain interferometry. Optics Communications, 2019, 431, 181-186.	2.1	17
11	Simultaneous measurement method of the physical thickness and group refractive index free from a non-measurable range. Optics Express, 2019, 27, 24682.	3.4	14
12	Precise thickness measurement and comparison of step-shaped microfluidic channel mold using optical interferometry. , 2019, , .		1
13	Analysis of measurement error caused by swing motion for determining the physical thickness and group refractive index of a large glass panel. , 2019, , .		0
14	A Hybrid Non-destructive Measuring Method of Three-dimensional Profile of Through Silicon Vias for Realization of Smart Devices. Scientific Reports, 2018, 8, 15342.	3.3	10
15	Total physical thickness measurement of a multi-layered wafer using a spectral-domain interferometer with an optical comb. Optics Express, 2017, 25, 12689.	3.4	23
16	3D profile measurement of small patterns for semiconductor devices using an optical fiber-based interferometric system integrated with confocal microscopy. , 2017, , .		0
17	Development of a High-Speed Depth Measuring Machine for through Silicon Vias on a 300 mm Silicon Wafer. Journal of the Korean Society for Precision Engineering, 2017, 34, 311-314.	0.2	0
18	Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser. Applied Physics Letters, 2016, 109, .	3.3	21

Jungjae Park

#	Article	IF	CITATIONS
19	Optical Fiber-Based Confocal and Interferometric System for Measuring the Depth and Diameter of Through Silicon Vias. Journal of Lightwave Technology, 2016, 34, 5462-5466.	4.6	11
20	Performance evaluation on the diameter and depth measurements of through-silicon vias using a spectral-domain interferometer. , 2016, , .		0
21	Thickness profile measurement of the double-layered glass substrate based on transmission-type spectral domain interferometer. , 2016, , .		0
22	Vibration-insensitive measurements of the thickness profile of large glass panels. Optics Express, 2015, 23, 32941.	3.4	33
23	Dimensional metrology for smart devices using the optical comb of femtosecond pulse lasers. , 2015, , .		0
24	Physical thickness and group refractive index measurement of bare glass panels using the optical comb for display industry. , 2015, , .		0
25	Dimensional metrology on a semiconductor packaging process using an optical comb. , 2014, , .		0
26	Fizeau-type interferometric probe to measure geometrical thickness of silicon wafers. Optics Express, 2014, 22, 23427.	3.4	28
27	Uncertainty evaluation of the geometrical thickness and refractive index of silicon wafers. Proceedings of SPIE, 2013, , .	0.8	2
28	Simultaneous measurement of the thickness profile and refractive index distribution of silicon wafers. , 2013, , .		2
29	Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser. Optics Communications, 2013, 305, 170-174.	2.1	39
30	Uncertainty improvement of geometrical thickness and refractive index measurement of a silicon wafer using a femtosecond pulse laser. Optics Express, 2012, 20, 12184.	3.4	55
31	Modified Roberts-Langenbeck test for measuring thickness and refractive index variation of silicon wafers. Optics Express, 2012, 20, 20078.	3.4	25
32	Active autofocus control using source dithering technique based on fibre-optic confocal principle. International Journal of Precision Engineering and Manufacturing, 2011, 12, 733-736.	2.2	4
33	Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing. Optics Letters, 2010, 35, 19.	3.3	28
34	Continuous scanning phase measurement for high immunity to vibration. Proceedings of SPIE, 2009, , .	0.8	0
35	A point-diffraction interferometer with vibration-desensitizing capability. , 2006, , .		1

0