Bruno C Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered nutrition behavior during COVID-19 pandemic lockdown in young adults. European Journal of Nutrition, 2021, 60, 2593-2602.	1.8	99
2	Outcome of patients treated with extracorporeal life support in cardiogenic shock complicating acute myocardial infarction: 1-year result from the ECLS-Shock study. Clinical Research in Cardiology, 2021, 110, 1412-1420.	1.5	24
3	Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer. Journal of Nuclear Cardiology, 2021, 28, 2965-2975.	1.4	6
4	Comparison of metabolic and functional parameters using cardiac 18F-FDC-PET in early to mid-adulthood male and female mice. EJNMMI Research, 2021, 11, 7.	1.1	3
5	Acute coronary syndrome-related hospital admissions during and after lockdown in Southern Germany. European Journal of Internal Medicine, 2021, 87, 112-114.	1.0	2
6	Altered alcohol consumption during COVID-19 pandemic lockdown. Nutrition Journal, 2021, 20, 44.	1.5	30
7	Health promoting behaviour of medical versus non-medical students during COVID-19 pandemic: results from the COLA cross-sectional study. Journal of Translational Medicine, 2021, 19, 242.	1.8	6
8	Feasibility and accuracy of SPECT myocardial perfusion imaging in end-stage lung disease. Journal of Nuclear Cardiology, 2020, 27, 903-911.	1.4	6
9	Out-of-hospital cardiac arrest incidence during COVID-19 pandemic in Southern Germany. Resuscitation, 2020, 157, 121-122.	1.3	11
10	Mental health impairment triggered by the COVID-19 pandemic in a sample population of German students. Journal of Investigative Medicine, 2020, 68, 1394-1396.	0.7	24
11	Cardioprotective Potential of Human Endothelial-Colony Forming Cells from Diabetic and Nondiabetic Donors. Cells, 2020, 9, 588.	1.8	8
12	Deceleration Capacity and Periodic Repolarization Dynamics As Predictors of Acute Mountain Sickness. High Altitude Medicine and Biology, 2020, 21, 417-422.	0.5	4
13	Type of sport activities during COVID-19 crisis among Bavarian students. Journal of Sports Medicine and Physical Fitness, 2020, 60, 1508-1510.	0.4	0
14	Blocking LFA-1 Aggravates Cardiac Inflammation in Experimental Autoimmune Myocarditis. Cells, 2019, 8, 1267.	1.8	1
15	Monitoring of Cardiac Remodeling in a Mouse Model of Pressure-Overload Left Ventricular Hypertrophy with [18F]FDG MicroPET. Molecular Imaging and Biology, 2018, 20, 268-274.	1.3	10
16	FIFA World Cup 2018. European Heart Journal, 2018, 39, 4139-4142.	1.0	4
17	Lower frequency routine surveillance endomyocardial biopsies after heart transplantation. PLoS ONE, 2017, 12, e0182880.	1.1	14
18	Isolation and expansion of cytokeratin positive progenitor cells from adult murine pancreatic ducts expressing Pdx-1, Nestin, Sox9, MafA and hepatic nuclear factors. Minerva Endocrinology, 2017, 42, 30-40.	0.6	0

BRUNO C HUBER

#	Article	IF	CITATIONS
19	FDG-PET reveals improved cardiac regeneration and attenuated adverse remodelling following Sitagliptin + G-CSF therapy after acute myocardial infarction. European Heart Journal Cardiovascular Imaging, 2016, 17, 136-145.	0.5	20
20	Attenuation of cardiac hypertrophy by G―CSF is associated with enhanced migration of bone marrowâ€derived cells. Journal of Cellular and Molecular Medicine, 2015, 19, 1033-1041.	1.6	11
21	Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation, 2015, 132, 762-771.	1.6	77
22	Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World Journal of Stem Cells, 2014, 6, 637.	1.3	30
23	Characterization of the molecular mechanisms underlying increased ischemic damage in the <i>aldehyde dehydrogenase 2</i> genetic polymorphism using a human induced pluripotent stem cell model system. Science Translational Medicine, 2014, 6, 255ra130.	5.8	84
24	Increased numbers of bone marrowâ€derived cells in parathyroid adenoma. European Journal of Clinical Investigation, 2014, 44, 833-839.	1.7	2
25	Effect of Human Donor Cell Source on Differentiation and Function of Cardiac Induced Pluripotent Stem Cells. Journal of the American College of Cardiology, 2014, 64, 436-448.	1.2	119
26	Chemically defined generation of human cardiomyocytes. Nature Methods, 2014, 11, 855-860.	9.0	1,320
27	The Role of 1.5 Tesla MRI and Anesthetic Regimen Concerning Cardiac Analysis in Mice with Cardiomyopathy. PLoS ONE, 2014, 9, e94615.	1.1	8
28	Enhanced stem cell migration mediated by VCAM-1/VLA-4 interaction improves cardiac function in virus-induced dilated cardiomyopathy. Basic Research in Cardiology, 2013, 108, 388.	2.5	18
29	Costimulation-adhesion blockade is superior to Cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation. Stem Cells, 2013, 31, 2354-2363.	1.4	31
30	In Vivo Functional and Transcriptional Profiling of Bone Marrow Stem Cells After Transplantation Into Ischemic Myocardium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 92-102.	1.1	52
31	Genome Editing of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells With Zinc Finger Nucleases for Cellular Imaging. Circulation Research, 2012, 111, 1494-1503.	2.0	99
32	The cardioprotective effects of parathyroid hormone are independent of endogenous granulocyte-colony stimulating factor release. Cardiovascular Research, 2012, 93, 330-339.	1.8	15
33	Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation. Circulation Research, 2012, 111, 882-893.	2.0	106
34	Migration of bone marrowâ€derived cells and improved perfusion after treatment with erythropoietin in a murine model of myocardial infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 152-159.	1.6	9
35	Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4+ stem cells into the ischaemic heart. Cardiovascular Research, 2011, 90, 529-537.	1.8	63
36	Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Research, 2011, 7, 244-255.	0.3	108

Bruno C Huber

#	Article	IF	CITATIONS
37	Cardiac arrest associated with sildenafil ingestion in a patient with an abnormal origin of the left coronary artery: case report. BMC Cardiovascular Disorders, 2011, 11, 49.	0.7	9
38	Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1466-H1471.	1.5	24
39	Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-Trial) — Rationale, design and first interim analysis. International Journal of Cardiology, 2010, 145, 282-284.	0.8	85
40	Erythropoietin administration after myocardial infarction in mice attenuates ischemic cardiomyopathy associated with enhanced homing of bone marrowâ€derived progenitor cells <i>via</i> the CXCRâ€4/SDFâ€1 axis. FASEB Journal, 2009, 23, 351-361.	0.2	88
41	Synergy between CD26/DPP-IV Inhibition and G-CSF Improves Cardiac Function after Acute Myocardial Infarction. Cell Stem Cell, 2009, 4, 313-323.	5.2	289
42	G-CSF treatment after myocardial infarction: Impact on bone marrow—derived vs cardiac progenitor cells. Experimental Hematology, 2008, 36, 695-702.	0.2	49
43	Parathyroid hormone effectively induces mobilization of progenitor cells without depletion of bone marrow. Experimental Hematology, 2008, 36, 1157-1166.	0.2	65
44	Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovascular Research, 2008, 77, 722-731.	1.8	70
45	Gâ€CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB Journal, 2006, 20, 956-958.	0.2	150