Yunlong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889514/publications.pdf Version: 2024-02-01

Υμινιονς Υμ

#	Article	IF	CITATIONS
1	Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences, 2016, 44, 269-279.	6.1	177
2	Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. Journal of Hazardous Materials, 2010, 184, 281-289.	12.4	106
3	Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of Hazardous Materials, 2018, 357, 53-62.	12.4	103
4	Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. Journal of Hazardous Materials, 2015, 286, 457-465.	12.4	96
5	Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Science of the Total Environment, 2014, 470-471, 983-992.	8.0	92
6	Fungicides induced triazole-resistance in Aspergillus fumigatus associated with mutations of TR46/Y121F/T289A and its appearance in agricultural fields. Journal of Hazardous Materials, 2017, 326, 54-60.	12.4	84
7	Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences, 2009, 21, 179-185.	6.1	68
8	Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.). Journal of Hazardous Materials, 2021, 405, 124269.	12.4	65
9	Reduced mobility of fomesafen through enhanced adsorption in biocharâ€amended soil. Environmental Toxicology and Chemistry, 2015, 34, 1258-1266.	4.3	64
10	Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments. Science of the Total Environment, 2016, 572, 1203-1212.	8.0	63
11	Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution, 2018, 243, 1206-1216.	7.5	63
12	Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils. Environmental Science and Pollution Research, 2018, 25, 25468-25475.	5.3	62
13	Effects of aging process on adsorption–desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. Journal of Environmental Sciences, 2017, 56, 180-191.	6.1	59
14	Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis. Scientific Reports, 2016, 6, 21332.	3.3	56
15	Dissipation of fomesafen in biochar-amended soil and its availability to corn (Zea mays L.) and earthworm (Eisenia fetida). Journal of Soils and Sediments, 2016, 16, 2439-2448.	3.0	56
16	Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. Journal of Hazardous Materials, 2020, 396, 122618.	12.4	55
17	Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. Journal of Hazardous Materials, 2021, 405, 124208.	12.4	53

Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant (<i>Triticum) Tj ETQq0 0 0 rgBT $_{5.2}^{/0}$ verlock 10 Tf 50 6

Yunlong Yu

#	Article	IF	CITATIONS
19	Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Science of the Total Environment, 2017, 592, 593-599.	8.0	47
20	Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Environmental Pollution, 2020, 259, 113877.	7.5	44
21	Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology, 2022, 7, 831-843.	13.3	44
22	Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum) Tj ETQq0 0 0	rgBT /Ove 8.2	rlock 10 Tf 5 41
	Sorption and genotovicity of sediment-associated pentachlorophenol and pyrene influenced by crop		

	residue ash. Journal of Soils and Sediments, 2009, 9, 604-612.		02
24	Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. Science of the Total Environment, 2020, 703, 135636.	8.0	30
25	Characterization of a novel carbendazim-degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses. Science of the Total Environment, 2021, 754, 142137.	8.0	30
26	Enterobacteriaceae predominate in the endophytic microbiome and contribute to the resistome of strawberry. Science of the Total Environment, 2020, 727, 138708.	8.0	29
27	Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1. Ecotoxicology and Environmental Safety, 2018, 150, 34-39.	6.0	28
28	Root Uptake of Imidacloprid and Propiconazole Is Affected by Root Composition and Soil Characteristics. Journal of Agricultural and Food Chemistry, 2020, 68, 15381-15389.	5.2	28
29	Nanoscale zerovalent iron-mediated degradation of DDT in soil. Environmental Science and Pollution Research, 2016, 23, 6253-6263.	5.3	27
30	Even Incorporation of Nitrogen into Fe ⁰ Nanoparticles as Crystalline Fe ₄ N for Efficient and Selective Trichloroethylene Degradation. Environmental Science & Technology, 2022, 56, 4489-4497.	10.0	26
31	Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil. Science of the Total Environment, 2018, 628-629, 661-671.	8.0	25
32	Characterization, genome functional analysis, and detoxification of atrazine by Arthrobacter sp. C2. Chemosphere, 2021, 264, 128514.	8.2	25
33	Foam shares antibiotic resistomes and bacterial pathogens with activated sludge in wastewater treatment plants. Journal of Hazardous Materials, 2021, 408, 124855.	12.4	25
34	Prevalence of Azole-Resistant <i>Aspergillus fumigatus</i> is Highly Associated with Azole Fungicide Residues in the Fields. Environmental Science & Technology, 2021, 55, 3041-3049.	10.0	25
35	Development of antibiotic resistance genes in soils with ten successive treatments of chlortetracycline and ciprofloxacin. Environmental Pollution, 2019, 253, 152-160.	7.5	24
36	Tebuconazole induces triazole-resistance in Aspergillus fumigatus in liquid medium and soil. Science of the Total Environment, 2019, 648, 1237-1243.	8.0	24

Yunlong Yu

#	Article	IF	CITATIONS
37	Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: Bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida). Science of the Total Environment, 2022, 815, 152937.	8.0	21
38	Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway. Science of the Total Environment, 2018, 616-617, 1612-1619.	8.0	20
39	Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli. Science of the Total Environment, 2022, 815, 152885.	8.0	20
40	Adsorption and Desorption of Carbendazim and Thiamethoxam in Five Different Agricultural Soils. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 550-554.	2.7	19
41	Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD. Journal of Environmental Sciences, 2015, 27, 42-50.	6.1	17
42	The Effects of Biochar Properties on Fomesafen Adsorption-Desorption Capacity of Biochar-Amended Soil. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	17
43	Deposition, Distribution, Metabolism, and Reduced Application Dose of Thiamethoxam in a Pepper-Planted Ecosystem. Journal of Agricultural and Food Chemistry, 2019, 67, 11848-11859.	5.2	17
44	Carbendazim shapes microbiome and enhances resistome in the earthworm gut. Microbiome, 2022, 10, 63.	11.1	17
45	Uptake, translocation, and metabolism of thiamethoxam in soil by leek plants. Environmental Research, 2022, 211, 113084.	7.5	16
46	Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental <i>Aspergillus fumigatus</i> Isolates from China. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	15
47	Exploring microbial community structure and biological function in manured soil during ten repeated treatments with chlortetracycline and ciprofloxacin. Chemosphere, 2019, 228, 469-477.	8.2	14
48	Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage. Scientific Reports, 2016, 6, 32339.	3.3	13
49	Microencapsulated chlorpyrifos: Degradation in soil and influence on soil microbial community structures. Journal of Environmental Sciences, 2014, 26, 2322-2330.	6.1	12
50	Mutation in cyp51A and high expression of efflux pump gene of Aspergillus fumigatus induced by propiconazole in liquid medium and soil. Environmental Pollution, 2020, 256, 113385.	7.5	11
51	Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications. Environmental Pollution, 2020, 266, 115124.	7.5	11
52	Increased triazole-resistance and cyp51A mutations in Aspergillus fumigatus after selection with a combination of the triazole fungicides difenoconazole and propiconazole. Journal of Hazardous Materials, 2020, 400, 123200.	12.4	9
53	Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil. Ecotoxicology and Environmental Safety, 2018, 158, 145-153.	6.0	8
54	Competitive Adsorption and Mobility of Propiconazole and Difenoconazole on Five Different Soils. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 927-933.	2.7	7

YUNLONG YU

#	Article	IF	CITATIONS
55	Deposition, dissipation, and minimum effective dosage of the fungicide carbendazim in the pepperâ€field ecosystem. Pest Management Science, 2020, 76, 907-916.	3.4	6
56	Adsorption, mobility and degradation of diphenamid in chinese soils. KSCE Journal of Civil Engineering, 2012, 16, 547-553.	1.9	5
57	Analysis method development and health risk assessment of pesticide and heavy metal residues in <i>Dendrobium Candidum</i> . RSC Advances, 2022, 12, 6869-6875.	3.6	5
58	Estimating the combined toxicity of flufenacet and imazaquin to sorghum with pore water herbicide concentration. Journal of Environmental Sciences, 2016, 41, 154-161.	6.1	4
59	Determination and Dietary Intake Risk Assessment of Pesticide Residues in Fritillariae Thunbergii Bulbs and Cultivated Soils. Journal of AOAC INTERNATIONAL, 2021, 104, 404-412.	1.5	3
60	Emergence of Triazole Resistance in <i>Aspergillus fumigatus</i> Exposed to Paclobutrazol. Journal of Agricultural and Food Chemistry, 2021, 69, 15538-15543.	5.2	3
61	Uptake, Accumulation, and translocation of azoxystrobin by Vegetable plants in soils: influence of soil characteristics and plant species. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 386-392.	2.7	2
62	Sorption, Desorption and Mobility of Microencapsulated Chlorpyrifos in Two Typical Soils. Archives of Environmental Contamination and Toxicology, 2021, 81, 265-271.	4.1	1
63	Acquired triazole-resistance of Aspergillus fumigatus in soil and earthworm guts exposed to propiconazole and difenoconazole at field-realistic concentrations. Science of the Total Environment, 2021, 786, 147577.	8.0	1
64	Herbicidal activity of atrazine to barnyard grass depends upon soil characteristics. Pest Management Science, 2022, 78, 3287-3293.	3.4	1