Masayoshi Kawaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889469/publications.pdf

Version: 2024-02-01

130 papers

10,035 citations

52 h-index 96 g-index

140 all docs

140 docs citations

140 times ranked 6494 citing authors

#	Article	IF	CITATIONS
1	Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications Biology, 2022, 5, 43.	2.0	22
2	Taxonomic revision of <i>Termitomyces</i> species found in Ryukyu Archipelago, Japan, based on phylogenetic analyses with three loci. Mycoscience, 2022, 63, 33-38.	0.3	3
3	Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in <i>Lotus japonicus (i). Plant Cell, 2022, 34, 1844-1862.</i>	3.1	21
4	Lotus japonicus HAR1 regulates root morphology locally and systemically under a moderate nitrate condition in the absence of rhizobia. Planta, 2022, 255, 95.	1.6	3
5	Auxin methylation by <i>IAMT1</i> , duplicated in the legume lineage, promotes root nodule development in <i>Lotus japonicus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116549119.	3.3	8
6	Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant Journal, 2021, 105, 1507-1520.	2.8	17
7	Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. Current Opinion in Plant Biology, 2021, 59, 102000.	3.5	24
8	Mutants of Lotus japonicus deficient in flavonoid biosynthesis. Journal of Plant Research, 2021, 134, 341-352.	1.2	6
9	Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation. Plant Cell, 2021, 33, 2340-2359.	3.1	52
10	Systemic Optimization of Legume Nodulation: A Shoot-Derived Regulator, miR2111. Frontiers in Plant Science, 2021, 12, 682486.	1.7	11
11	CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the daphne Mutant of Lotus japonicus. Molecular Plant-Microbe Interactions, 2020, 33, 320-327.	1.4	8
12	Spatial regulation of resource allocation in response to nutritional availability. Journal of Theoretical Biology, 2020, 486, 110078.	0.8	3
13	Assessment of Polygala paniculata (Polygalaceae) characteristics for evolutionary studies of legume–rhizobia symbiosis. Journal of Plant Research, 2020, 133, 109-122.	1.2	3
14	Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25779-25788.	3.3	67
15	MIR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in Lotus japonicus. Nature Communications, 2020, 11, 5192.	5.8	31
16	Autoregulation of nodulation pathway is dispensable for nitrate-induced control of rhizobial infection. Plant Signaling and Behavior, 2020, 15, 1733814.	1.2	10
17	Mechanisms of Rice Endophytic Bradyrhizobial Cell Differentiation and Its Role in Nitrogen Fixation. Microbes and Environments, 2020, 35, n/a .	0.7	3
18	Reactive Sulfur Species Interact with Other Signal Molecules in Root Nodule Symbiosis in Lotus japonicus. Antioxidants, 2020, 9, 145.	2.2	16

#	Article	IF	CITATIONS
19	ERN1 and CYCLOPS coordinately activate NIN signaling to promote infection thread formation in Lotus japonicus. Journal of Plant Research, 2019, 132, 641-653.	1.2	19
20	Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. Plant and Cell Physiology, 2019, 60, 2272-2281.	1.5	30
21	Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nature Microbiology, 2019, 4, 1654-1660.	5.9	58
22	A shared gene drives lateral root development and root nodule symbiosis pathways in <i>Lotus</i> Science, 2019, 366, 1021-1023.	6.0	135
23	LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics, 2019, 15, e1007865.	1.5	23
24	PLENTY, a hydroxyprolineO-arabinosyltransferase, negatively regulates root nodule symbiosis inLotus japonicus. Journal of Experimental Botany, 2019, 70, 507-517.	2.4	23
25	A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis inÂLotus japonicus. Nature Communications, 2018, 9, 499.	5.8	144
26	Lossâ€ofâ€function of <scp>ASPARTIC PEPTIDASE NODULE </scp> â€ <scp>INDUCED </scp> 1 (<scp>APN </scp> 1) <i>Lotus japonicus </i> restricts efficient nitrogenâ€fixing symbiosis with specific <i>Mesorhizobium loti </i> strains. Plant Journal, 2018, 93, 5-16.	in 2.8	46
27	Spatial regularity control of phyllotaxis pattern generated by the mutual interaction between auxin and PIN1. PLoS Computational Biology, 2018, 14, e1006065.	1.5	9
28	The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics, 2018, 19, 465.	1.2	91
29	Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Communications Biology, 2018, 1, 87.	2.0	55
30	Spatiotemporal deep imaging of syncytium induced by the soybean cyst nematode Heterodera glycines. Protoplasma, 2017, 254, 2107-2115.	1.0	19
31	Fluorescent Labeling of the Cyst Nematode <i>Heterodera glycines</i> in Deep-Tissue Live Imaging. Cytologia, 2017, 82, 251-259.	0.2	0
32	Aquaporinâ€mediated longâ€distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virusâ€induced gene silencing. New Phytologist, 2016, 211, 1202-1208.	3.5	122
33	Function and evolution of aLotus japonicus AP2/ERF family transcription factor that is required for development of infection threads. DNA Research, 2016, 24, dsw052.	1.5	36
34	The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza. Plant Signaling and Behavior, 2016, 11, e1265723.	1.2	29
35	The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation. Plant Physiology, 2016, 172, 2033-2043.	2.3	38
36	Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus <i>Rhizophagus irregularis</i> Interactions, 2016, 29, 277-286.	1.4	136

#	Article	IF	CITATIONS
37	Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus. Journal of Plant Research, 2016, 129, 909-919.	1.2	59
38	A comprehensive strategy for identifying longâ€distance mobile peptides in xylem sap. Plant Journal, 2015, 84, 611-620.	2.8	51
39	Shoot HAR1 mediates nitrate inhibition of nodulation in <i>Lotus japonicus</i> . Plant Signaling and Behavior, 2015, 10, e1000138.	1.2	29
40	RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in <i>Lotus japonicus</i> and <i>Rhizophagus irregularis</i> Plant and Cell Physiology, 2015, 56, 1490-1511.	1.5	140
41	Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria. International Review of Cell and Molecular Biology, 2015, 316, 111-158.	1.6	133
42	Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nature Communications, 2015, 6, 6450.	5. 8	50
43	Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Plant Signaling and Behavior, 2015, 10, e1028706.	1.2	18
44	Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in <i>Lotus japonicus</i> Å. Plant Physiology, 2015, 167, 545-557.	2.3	120
45	Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage. PLoS Genetics, 2015, 11, e1005374.	1.5	74
46	Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus. PLoS ONE, 2015, 10, e0139127.	1.1	7
47	Evolutionary Dynamics of Nitrogen Fixation in the Legume–Rhizobia Symbiosis. PLoS ONE, 2014, 9, e93670.	1.1	53
48	Transcriptomic profiles of nodule senescence in <i>Lotus japonicus</i> and <i>Mesorhizobium loti</i> symbiosis. Plant Biotechnology, 2014, 31, 345-349.	0.5	17
49	Polymorphisms of E1 and GIGANTEA in wild populations of Lotus japonicus. Journal of Plant Research, 2014, 127, 651-660.	1.2	5
50	Common symbiosis genesCERBERUSandNSP1provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses inLotus japonicus. Plant Signaling and Behavior, 2014, 9, e28544.	1,2	9
51	Genes for Autoregulation of Nodulation. Compendium of Plant Genomes, 2014, , 73-78.	0.3	0
52	Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation. Plant and Cell Physiology, 2014, 55, 928-941.	1.5	14
53	Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications, 2014, 5, 4983.	5.8	199
54	Polyphosphate accumulation is driven by transcriptome alterations that lead to nearâ€synchronous and nearâ€equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytologist, 2014, 204, 638-649.	3.5	63

#	Article	IF	CITATIONS
55	A Positive Regulator of Nodule Organogenesis, NODULE INCEPTION, Acts as a Negative Regulator of Rhizobial Infection in <i>Lotus japonicus</i> Â Â. Plant Physiology, 2014, 165, 747-758.	2.3	84
56	Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Current Opinion in Plant Biology, 2014, 21, 16-22.	3.5	64
57	NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14607-14612.	3.3	175
58	Endoreduplication-mediated initiation of symbiotic organ development in <i>Lotus japonicus</i> Development (Cambridge), 2014, 141, 2441-2445.	1.2	52
59	Wild Accessions and Mutant Resources. Compendium of Plant Genomes, 2014, , 211-220.	0.3	0
60	Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nature Communications, 2013, 4, 2191.	5.8	292
61	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	3.3	717
62	CERBERUS and NSP1 of Lotus japonicus are Common Symbiosis Genes that Modulate Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2013, 54, 1711-1723.	1.5	78
63	Two Distinct EIN2 Genes Cooperatively Regulate Ethylene Signaling in Lotus japonicus Plant and Cell Physiology, 2013, 54, 1469-1477.	1.5	55
64	<i>TRICOT</i> encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in <i>Lotus japonicus</i> . Development (Cambridge), 2013, 140, 353-361.	1.2	21
65	Pattern formation by two-layer Turing system with complementarysynthesis. Journal of Theoretical Biology, 2013, 322, 33-45.	0.8	8
66	Genetic basis of cytokinin and auxin functions during root nodule development. Frontiers in Plant Science, 2013, 4, 42.	1.7	65
67	Induction of localized auxin response during spontaneous nodule development in <i>Lotus japonicus</i> . Plant Signaling and Behavior, 2013, 8, e23359.	1.2	9
68	Pattern Dynamics in Adaxial-Abaxial Specific Gene Expression Are Modulated by a Plastid Retrograde Signal during Arabidopsis thaliana Leaf Development. PLoS Genetics, 2013, 9, e1003655.	1.5	44
69	Down-Regulation of NSP2 Expression in Developmentally Young Regions of Lotus japonicus Roots in Response to Rhizobial Inoculation. Plant and Cell Physiology, 2013, 54, 518-527.	1.5	16
70	TOO MUCH LOVE, a Novel Kelch Repeat-Containing F-box Protein, Functions in the Long-Distance Regulation of the Legume–Rhizobium Symbiosis. Plant and Cell Physiology, 2013, 54, 433-447.	1.5	110
71	Grafting analysis indicates that malfunction of TRICOT in the root causes a nodulation-deficient phenotype in Lotus japonicus. Plant Signaling and Behavior, 2013, 8, e23497.	1.2	0
72	The transcription activation and homodimerization of Lotus japonicus Nod factor Signaling Pathway protein. Plant Signaling and Behavior, 2013, 8, e26457.	1.2	3

#	Article	IF	CITATIONS
73	Hairy Root Transformation in Lotus japonicus. Bio-protocol, 2013, 3, .	0.2	15
74	The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology, 2012, 53, 225-236.	1.5	95
75	Conserved genetic determinant of motor organ identity in <i>Medicago truncatula</i> and related legumes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11723-11728.	3.3	57
76	A Set of Lotus japonicus Gifu x Lotus burttii Recombinant Inbred Lines Facilitates Map-based Cloning and QTL Mapping. DNA Research, 2012, 19, 317-323.	1.5	40
77	The SNARE Protein SYP71 Expressed in Vascular Tissues Is Involved in Symbiotic Nitrogen Fixation in <i>Lotus japonicus</i> Nodules Â. Plant Physiology, 2012, 160, 897-905.	2.3	36
78	Positive and negative regulation of cortical cell division during root nodule development in <i>Lotus japonicus</i> is accompanied by auxin response. Development (Cambridge), 2012, 139, 3997-4006.	1.2	186
79	Strategy for shoot meristem proliferation in plants. Plant Signaling and Behavior, 2011, 6, 1851-1854.	1.2	3
80	Reaction-Diffusion Pattern in Shoot Apical Meristem of Plants. PLoS ONE, 2011, 6, e18243.	1.1	45
81	The <i>Clavata2</i> genes of pea and <i>Lotus japonicus</i> affect autoregulation of nodulation. Plant Journal, 2011, 65, 861-871.	2.8	110
82	Expression and Functional Analysis of a CLV3-Like Gene in the Model Legume Lotus japonicus. Plant and Cell Physiology, 2011, 52, 1211-1221.	1.5	10
83	Two CLE genes are induced by phosphate in roots of Lotus japonicus. Journal of Plant Research, 2011, 124, 155-163.	1.2	39
84	The evolution of symbiotic systems. Cellular and Molecular Life Sciences, 2011, 68, 1283-1284.	2.4	2
85	Plant-Microbe Communications for Symbiosis. Plant and Cell Physiology, 2010, 51, 1377-1380.	1.5	67
86	<i>NENA</i> , a <i>Lotus japonicus</i> Homolog of <i>Sec13</i> , Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development Â. Plant Cell, 2010, 22, 2509-2526.	3.1	215
87	The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in <i>Lotus japonicus</i>). Development (Cambridge), 2010, 137, 4317-4325.	1.2	109
88	plenty, a Novel Hypernodulation Mutant in Lotus japonicus. Plant and Cell Physiology, 2010, 51, 1425-1435.	1.5	38
89	How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground. Plant and Cell Physiology, 2010, 51, 1381-1397.	1.5	227
90	Analysis of two potential long-distance signaling molecules, LjCLE-RS1/2 and jasmonic acid, in a hypernodulating mutanttoo much love. Plant Signaling and Behavior, 2010, 5, 403-405.	1.2	9

#	Article	IF	Citations
91	Nod Factor/Nitrate-Induced CLE Genes that Drive HAR1-Mediated Systemic Regulation of Nodulation. Plant and Cell Physiology, 2009, 50, 67-77.	1.5	342
92	Conservation of <i>Lotus</i> and Arabidopsis Basic Helix-Loop-Helix Proteins Reveals New Players in Root Hair Development Â. Plant Physiology, 2009, 151, 1175-1185.	2.3	113
93	Long-Distance Control of Nodulation: Molecules and Models. Molecules and Cells, 2009, 27, 129-134.	1.0	57
94	Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature, 2009, 462, 514-517.	13.7	103
95	Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants. Journal of Plant Physiology, 2009, 166, 353-362.	1.6	20
96	<i>TOO MUCH LOVE</i> , a Root Regulator Associated with the Long-Distance Control of Nodulation in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2009, 22, 259-268.	1.4	114
97	CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20540-20545.	3.3	398
98	Requirement for Mesorhizobium loti Ornithine Transcarbamoylase for Successful Symbiosis with Lotus japonicus as Revealed by an Unexpected Long-Range Genome Deletion. Plant and Cell Physiology, 2008, 49, 301-313.	1.5	11
99	Morphological Effects of Sinefungin, an Inhibitor of S-Adenosylmethionine-Dependent Methyltransferases, on Anabaena sp. PCC 7120. Microbes and Environments, 2008, 23, 346-349.	0.7	2
100	NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus. Plant Cell, 2007, 19, 610-624.	3.1	309
101	Isolation and Characterization of Arbuscules from Roots of an Increased-arbuscule-forming Mutant of Lotus japonicus. Annals of Botany, 2007, 100, 1599-1603.	1.4	2
102	New Nodulation Mutants Responsible for Infection Thread Development in Lotus japonicus. Molecular Plant-Microbe Interactions, 2006, 19, 801-810.	1.4	32
103	Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci. Molecular Plant-Microbe Interactions, 2006, 19, 80-91.	1.4	94
104	Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature, 2006, 441, 1153-1156.	13.7	400
105	Long-distance signaling to control root nodule number. Current Opinion in Plant Biology, 2006, 9, 496-502.	3.5	169
106	Positional Cloning Identifies Lotus japonicus NSP2, A Putative Transcription Factor of the GRAS Family, Required for NIN and ENOD40 Gene Expression in Nodule Initiation. DNA Research, 2006, 13, 255-265.	1.5	129
107	Shoot-applied MeJA Suppresses Root Nodulation in Lotus japonicus. Plant and Cell Physiology, 2006, 47, 176-180.	1.5	129
108	klavier (klv), A novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant Journal, 2005, 44, 505-515.	2.8	114

#	Article	IF	CITATIONS
109	Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 2005, 433, 527-531.	13.7	391
110	Characterization of the Lotus japonicus Symbiotic Mutant lot1 That Shows a Reduced Nodule Number and Distorted Trichomes. Plant Physiology, 2005, 137, 1261-1271.	2.3	31
111	Lotus burttii Takes a Position of the Third Corner in the Lotus Molecular Genetics Triangle. DNA Research, 2005, 12, 69-77.	1.5	38
112	The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell, 2005, 17, 1625-1636.	3.1	227
113	"Activator―and "Inibitor―Leading to Generation and Stabilization of Symbiotic Organ Development in Legume. , 2005, , 179-182.		1
114	Pollen Development and Tube Growth are Affected in the Symbiotic Mutant of Lotus japonicus, crinkle. Plant and Cell Physiology, 2004, 45, 511-520.	1.5	29
115	Partial purification of an enzyme hydrolyzing indole-3-acetamide from rice cells. Journal of Plant Research, 2004, 117, 191-8.	1.2	14
116	cDNA Macroarray Analysis of Gene Expression in Ineffective Nodules Induced on the Lotus japonicus sen1 Mutant. Molecular Plant-Microbe Interactions, 2004, 17, 1223-1233.	1.4	25
117	SLEEPLESS, a gene conferring nyctinastic movement in legume. Journal of Plant Research, 2003, 116, 151-154.	1.2	19
118	crinkle, a Novel Symbiotic Mutant That Affects the Infection Thread Growth and Alters the Root Hair, Trichome, and Seed Development in Lotus japonicus Â. Plant Physiology, 2003, 131, 1054-1063.	2.3	77
119	Root, Root Hair, and Symbiotic Mutants of the Model Legume Lotus japonicus. Molecular Plant-Microbe Interactions, 2002, 15, 17-26.	1.4	150
120	The Novel Symbiotic Phenotype of Enhanced-Nodulating Mutant of Lotus japonicus: astray Mutant is an Early Nodulating Mutant with Wider Nodulation Zone. Plant and Cell Physiology, 2002, 43, 853-859.	1.5	56
121	A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15206-15210.	3.3	113
122	HAR1 mediates systemic regulation of symbiotic organ development. Nature, 2002, 420, 426-429.	13.7	487
123	Responses of a Model Legume Lotus japonicus to Lipochitin Oligosaccharide Nodulation Factors Purified from Mesorhizobium loti JRL501. Molecular Plant-Microbe Interactions, 2001, 14, 848-856.	1.4	77
124	Characterization of Mycorrhizas Formed by Glomus sp. on Roots of Hypernodulating Mutants of Lotus japonicus. Journal of Plant Research, 2000, 113, 443-448.	1.2	72
125	Current Development of Lotus japonicus Research. Journal of Plant Research, 2000, 113, 449-449.	1.2	2
126	Nodule Organogenesis in Lotus japonicus. Journal of Plant Research, 2000, 113, 489-495.	1.2	19

#	Article	IF	CITATIONS
127	Lotus japonicus `Miyakojima' MG-20: An Early-Flowering Accession Suitable for Indoor Handling. Journal of Plant Research, 2000, 113, 507-509.	1.2	81
128	The Excessive Production of Indole-3-Acetic Acid and Its Significance in Studies of the Biosynthesis of This Regulator of Plant Growth and Development. Plant and Cell Physiology, 1996, 37, 1043-1048.	1.5	36
129	The Presence of an Enzyme that Converts Indole-3-acetamide into IAA in Wild and Cultivated Rice. Plant and Cell Physiology, 1991, 32, 143-149.	1.5	45
130	Systemic Regulation of Root Nodule Formation. , 0, , .		16