Masayoshi Kawaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	7.1	717
2	HAR1 mediates systemic regulation of symbiotic organ development. Nature, 2002, 420, 426-429.	27.8	487
3	Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature, 2006, 441, 1153-1156.	27.8	400
4	CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20540-20545.	7.1	398
5	Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 2005, 433, 527-531.	27.8	391
6	Nod Factor/Nitrate-Induced CLE Genes that Drive HAR1-Mediated Systemic Regulation of Nodulation. Plant and Cell Physiology, 2009, 50, 67-77.	3.1	342
7	NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus. Plant Cell, 2007, 19, 610-624.	6.6	309
8	Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nature Communications, 2013, 4, 2191.	12.8	292
9	The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell, 2005, 17, 1625-1636.	6.6	227
10	How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground. Plant and Cell Physiology, 2010, 51, 1381-1397.	3.1	227
11	<i>NENA</i> , a <i>Lotus japonicus</i> Homolog of <i>Sec13</i> , Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development Â. Plant Cell, 2010, 22, 2509-2526.	6.6	215
12	Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications, 2014, 5, 4983.	12.8	199
13	Positive and negative regulation of cortical cell division during root nodule development in <i>Lotus japonicus</i> is accompanied by auxin response. Development (Cambridge), 2012, 139, 3997-4006.	2.5	186
14	NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14607-14612.	7.1	175
15	Long-distance signaling to control root nodule number. Current Opinion in Plant Biology, 2006, 9, 496-502.	7.1	169
16	Root, Root Hair, and Symbiotic Mutants of the Model Legume Lotus japonicus. Molecular Plant-Microbe Interactions, 2002, 15, 17-26.	2.6	150
17	A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis inÂLotus japonicus. Nature Communications, 2018, 9, 499.	12.8	144
18	RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in <i>Lotus japonicus</i> and <i>Rhizophagus irregularis</i> . Plant and Cell Physiology, 2015, 56, 1490-1511.	3.1	140

#	Article	IF	CITATIONS
19	Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus <i>Rhizophagus irregularis</i> . Molecular Plant-Microbe Interactions, 2016, 29, 277-286.	2.6	136
20	A shared gene drives lateral root development and root nodule symbiosis pathways in <i>Lotus</i> . Science, 2019, 366, 1021-1023.	12.6	135
21	Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria. International Review of Cell and Molecular Biology, 2015, 316, 111-158.	3.2	133
22	Positional Cloning Identifies Lotus japonicus NSP2, A Putative Transcription Factor of the GRAS Family, Required for NIN and ENOD40 Gene Expression in Nodule Initiation. DNA Research, 2006, 13, 255-265.	3.4	129
23	Shoot-applied MeJA Suppresses Root Nodulation in Lotus japonicus. Plant and Cell Physiology, 2006, 47, 176-180.	3.1	129
24	Aquaporinâ€mediated longâ€distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virusâ€induced gene silencing. New Phytologist, 2016, 211, 1202-1208.	7.3	122
25	Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in <i>Lotus japonicus</i> Â. Plant Physiology, 2015, 167, 545-557.	4.8	120
26	klavier (klv), A novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant Journal, 2005, 44, 505-515.	5.7	114
27	<i>TOO MUCH LOVE</i> , a Root Regulator Associated with the Long-Distance Control of Nodulation in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2009, 22, 259-268.	2.6	114
28	A Lotus basic leucine zipper protein with a RINC-finger motif negatively regulates the developmental program of nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15206-15210.	7.1	113
29	Conservation of <i>Lotus</i> and Arabidopsis Basic Helix-Loop-Helix Proteins Reveals New Players in Root Hair Development Â. Plant Physiology, 2009, 151, 1175-1185.	4.8	113
30	The <i>Clavata2</i> genes of pea and <i>Lotus japonicus</i> affect autoregulation of nodulation. Plant Journal, 2011, 65, 861-871.	5.7	110
31	TOO MUCH LOVE, a Novel Kelch Repeat-Containing F-box Protein, Functions in the Long-Distance Regulation of the Legume–Rhizobium Symbiosis. Plant and Cell Physiology, 2013, 54, 433-447.	3.1	110
32	The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in <i>Lotus japonicus</i> . Development (Cambridge), 2010, 137, 4317-4325.	2.5	109
33	Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature, 2009, 462, 514-517.	27.8	103
34	The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology, 2012, 53, 225-236.	3.1	95
35	Cenetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci. Molecular Plant-Microbe Interactions, 2006, 19, 80-91.	2.6	94
36	The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics, 2018, 19, 465.	2.8	91

#	Article	IF	CITATIONS
37	A Positive Regulator of Nodule Organogenesis, NODULE INCEPTION, Acts as a Negative Regulator of Rhizobial Infection in <i>Lotus japonicus</i> Â Â. Plant Physiology, 2014, 165, 747-758.	4.8	84
38	Lotus japonicus `Miyakojima' MG-20: An Early-Flowering Accession Suitable for Indoor Handling. Journal of Plant Research, 2000, 113, 507-509.	2.4	81
39	CERBERUS and NSP1 of Lotus japonicus are Common Symbiosis Genes that Modulate Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2013, 54, 1711-1723.	3.1	78
40	Responses of a Model Legume Lotus japonicus to Lipochitin Oligosaccharide Nodulation Factors Purified from Mesorhizobium loti JRL501. Molecular Plant-Microbe Interactions, 2001, 14, 848-856.	2.6	77
41	crinkle, a Novel Symbiotic Mutant That Affects the Infection Thread Growth and Alters the Root Hair, Trichome, and Seed Development in Lotus japonicus Â. Plant Physiology, 2003, 131, 1054-1063.	4.8	77
42	Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage. PLoS Genetics, 2015, 11, e1005374.	3.5	74
43	Characterization of Mycorrhizas Formed by Glomus sp. on Roots of Hypernodulating Mutants of Lotus japonicus. Journal of Plant Research, 2000, 113, 443-448.	2.4	72
44	Plant-Microbe Communications for Symbiosis. Plant and Cell Physiology, 2010, 51, 1377-1380.	3.1	67
45	Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25779-25788.	7.1	67
46	Genetic basis of cytokinin and auxin functions during root nodule development. Frontiers in Plant Science, 2013, 4, 42.	3.6	65
47	Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Current Opinion in Plant Biology, 2014, 21, 16-22.	7.1	64
48	Polyphosphate accumulation is driven by transcriptome alterations that lead to nearâ€synchronous and nearâ€equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytologist, 2014, 204, 638-649.	7.3	63
49	Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus. Journal of Plant Research, 2016, 129, 909-919.	2.4	59
50	Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nature Microbiology, 2019, 4, 1654-1660.	13.3	58
51	Long-Distance Control of Nodulation: Molecules and Models. Molecules and Cells, 2009, 27, 129-134.	2.6	57
52	Conserved genetic determinant of motor organ identity in <i>Medicago truncatula</i> and related legumes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11723-11728.	7.1	57
53	The Novel Symbiotic Phenotype of Enhanced-Nodulating Mutant of Lotus japonicus: astray Mutant is an Early Nodulating Mutant with Wider Nodulation Zone. Plant and Cell Physiology, 2002, 43, 853-859.	3.1	56
54	Two Distinct EIN2 Genes Cooperatively Regulate Ethylene Signaling in Lotus japonicus Plant and Cell Physiology, 2013, 54, 1469-1477.	3.1	55

Мазауозні Каwaguchi

#	Article	IF	CITATIONS
55	Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Communications Biology, 2018, 1, 87.	4.4	55
56	Evolutionary Dynamics of Nitrogen Fixation in the Legume–Rhizobia Symbiosis. PLoS ONE, 2014, 9, e93670.	2.5	53
57	Endoreduplication-mediated initiation of symbiotic organ development in <i>Lotus japonicus</i> . Development (Cambridge), 2014, 141, 2441-2445.	2.5	52
58	Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation. Plant Cell, 2021, 33, 2340-2359.	6.6	52
59	A comprehensive strategy for identifying longâ€distance mobile peptides in xylem sap. Plant Journal, 2015, 84, 611-620.	5.7	51
60	Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nature Communications, 2015, 6, 6450.	12.8	50
61	Lossâ€ofâ€function of <scp>ASPARTIC PEPTIDASE NODULE</scp> â€ <scp>INDUCED</scp> 1 (<scp>APN</scp> 1 <i>Lotus japonicus</i> restricts efficient nitrogenâ€fixing symbiosis with specific <i>Mesorhizobium loti</i> strains. Plant Journal, 2018, 93, 5-16.) in 5.7	46
62	The Presence of an Enzyme that Converts Indole-3-acetamide into IAA in Wild and Cultivated Rice. Plant and Cell Physiology, 1991, 32, 143-149.	3.1	45
63	Reaction-Diffusion Pattern in Shoot Apical Meristem of Plants. PLoS ONE, 2011, 6, e18243.	2.5	45
64	Pattern Dynamics in Adaxial-Abaxial Specific Gene Expression Are Modulated by a Plastid Retrograde Signal during Arabidopsis thaliana Leaf Development. PLoS Genetics, 2013, 9, e1003655.	3.5	44
65	A Set of Lotus japonicus Cifu x Lotus burttii Recombinant Inbred Lines Facilitates Map-based Cloning and QTL Mapping. DNA Research, 2012, 19, 317-323.	3.4	40
66	Two CLE genes are induced by phosphate in roots of Lotus japonicus. Journal of Plant Research, 2011, 124, 155-163.	2.4	39
67	Lotus burttii Takes a Position of the Third Corner in the Lotus Molecular Genetics Triangle. DNA Research, 2005, 12, 69-77.	3.4	38
68	plenty, a Novel Hypernodulation Mutant in Lotus japonicus. Plant and Cell Physiology, 2010, 51, 1425-1435.	3.1	38
69	The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation. Plant Physiology, 2016, 172, 2033-2043.	4.8	38
70	The Excessive Production of Indole-3-Acetic Acid and Its Significance in Studies of the Biosynthesis of This Regulator of Plant Growth and Development. Plant and Cell Physiology, 1996, 37, 1043-1048.	3.1	36
71	The SNARE Protein SYP71 Expressed in Vascular Tissues Is Involved in Symbiotic Nitrogen Fixation in <i>Lotus japonicus</i> Nodules Â. Plant Physiology, 2012, 160, 897-905.	4.8	36
72	Function and evolution of aLotus japonicusAP2/ERF family transcription factor that is required for development of infection threads. DNA Research, 2016, 24, dsw052.	3.4	36

Мазауозні Каwaguchi

#	Article	IF	CITATIONS
73	New Nodulation Mutants Responsible for Infection Thread Development in Lotus japonicus. Molecular Plant-Microbe Interactions, 2006, 19, 801-810.	2.6	32
74	Characterization of the Lotus japonicus Symbiotic Mutant lot1 That Shows a Reduced Nodule Number and Distorted Trichomes. Plant Physiology, 2005, 137, 1261-1271.	4.8	31
75	MIR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in Lotus japonicus. Nature Communications, 2020, 11, 5192.	12.8	31
76	Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. Plant and Cell Physiology, 2019, 60, 2272-2281.	3.1	30
77	Pollen Development and Tube Growth are Affected in the Symbiotic Mutant of Lotus japonicus, crinkle. Plant and Cell Physiology, 2004, 45, 511-520.	3.1	29
78	Shoot HAR1 mediates nitrate inhibition of nodulation in <i>Lotus japonicus</i> . Plant Signaling and Behavior, 2015, 10, e1000138.	2.4	29
79	The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza. Plant Signaling and Behavior, 2016, 11, e1265723.	2.4	29
80	cDNA Macroarray Analysis of Gene Expression in Ineffective Nodules Induced on the Lotus japonicus sen1 Mutant. Molecular Plant-Microbe Interactions, 2004, 17, 1223-1233.	2.6	25
81	Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. Current Opinion in Plant Biology, 2021, 59, 102000.	7.1	24
82	LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics, 2019, 15, e1007865.	3.5	23
83	PLENTY, a hydroxyprolineO-arabinosyltransferase, negatively regulates root nodule symbiosis inLotus japonicus. Journal of Experimental Botany, 2019, 70, 507-517.	4.8	23
84	Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications Biology, 2022, 5, 43.	4.4	22
85	<i>TRICOT</i> encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in <i>Lotus japonicus</i> . Development (Cambridge), 2013, 140, 353-361.	2.5	21
86	Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in <i>Lotus japonicus</i> . Plant Cell, 2022, 34, 1844-1862.	6.6	21
87	Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants. Journal of Plant Physiology, 2009, 166, 353-362.	3.5	20
88	Nodule Organogenesis in Lotus japonicus. Journal of Plant Research, 2000, 113, 489-495.	2.4	19
89	SLEEPLESS, a gene conferring nyctinastic movement in legume. Journal of Plant Research, 2003, 116, 151-154.	2.4	19
90	Spatiotemporal deep imaging of syncytium induced by the soybean cyst nematode Heterodera glycines. Protoplasma, 2017, 254, 2107-2115.	2.1	19

#	Article	IF	CITATIONS
91	ERN1 and CYCLOPS coordinately activate NIN signaling to promote infection thread formation in Lotus japonicus. Journal of Plant Research, 2019, 132, 641-653.	2.4	19
92	Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Plant Signaling and Behavior, 2015, 10, e1028706.	2.4	18
93	Transcriptomic profiles of nodule senescence in <i>Lotus japonicus</i> and <i>Mesorhizobium loti</i> symbiosis. Plant Biotechnology, 2014, 31, 345-349.	1.0	17
94	Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant Journal, 2021, 105, 1507-1520.	5.7	17
95	Down-Regulation of NSP2 Expression in Developmentally Young Regions of Lotus japonicus Roots in Response to Rhizobial Inoculation. Plant and Cell Physiology, 2013, 54, 518-527.	3.1	16
96	Systemic Regulation of Root Nodule Formation. , 0, , .		16
97	Reactive Sulfur Species Interact with Other Signal Molecules in Root Nodule Symbiosis in Lotus japonicus. Antioxidants, 2020, 9, 145.	5.1	16
98	Hairy Root Transformation in Lotus japonicus. Bio-protocol, 2013, 3, .	0.4	15
99	Partial purification of an enzyme hydrolyzing indole-3-acetamide from rice cells. Journal of Plant Research, 2004, 117, 191-8.	2.4	14
100	Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation. Plant and Cell Physiology, 2014, 55, 928-941.	3.1	14
101	Requirement for Mesorhizobium loti Ornithine Transcarbamoylase for Successful Symbiosis with Lotus japonicus as Revealed by an Unexpected Long-Range Genome Deletion. Plant and Cell Physiology, 2008, 49, 301-313.	3.1	11
102	Systemic Optimization of Legume Nodulation: A Shoot-Derived Regulator, miR2111. Frontiers in Plant Science, 2021, 12, 682486.	3.6	11
103	Expression and Functional Analysis of a CLV3-Like Gene in the Model Legume Lotus japonicus. Plant and Cell Physiology, 2011, 52, 1211-1221.	3.1	10
104	Autoregulation of nodulation pathway is dispensable for nitrate-induced control of rhizobial infection. Plant Signaling and Behavior, 2020, 15, 1733814.	2.4	10
105	Analysis of two potential long-distance signaling molecules,LjCLE-RS1/2and jasmonic acid, in a hypernodulating mutanttoo much love. Plant Signaling and Behavior, 2010, 5, 403-405.	2.4	9
106	Induction of localized auxin response during spontaneous nodule development in <i>Lotus japonicus</i> . Plant Signaling and Behavior, 2013, 8, e23359.	2.4	9
107	Common symbiosis genesCERBERUSandNSP1provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses inLotus japonicus. Plant Signaling and Behavior, 2014, 9, e28544.	2.4	9
108	Spatial regularity control of phyllotaxis pattern generated by the mutual interaction between auxin and PIN1. PLoS Computational Biology, 2018, 14, e1006065.	3.2	9

#	Article	IF	CITATIONS
109	Pattern formation by two-layer Turing system with complementarysynthesis. Journal of Theoretical Biology, 2013, 322, 33-45.	1.7	8
110	CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the daphne Mutant of Lotus japonicus. Molecular Plant-Microbe Interactions, 2020, 33, 320-327.	2.6	8
111	Auxin methylation by <i>IAMT1</i> , duplicated in the legume lineage, promotes root nodule development in <i>Lotus japonicus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116549119.	7.1	8
112	Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus. PLoS ONE, 2015, 10, e0139127.	2.5	7
113	Mutants of Lotus japonicus deficient in flavonoid biosynthesis. Journal of Plant Research, 2021, 134, 341-352.	2.4	6
114	Polymorphisms of E1 and GIGANTEA in wild populations of Lotus japonicus. Journal of Plant Research, 2014, 127, 651-660.	2.4	5
115	Strategy for shoot meristem proliferation in plants. Plant Signaling and Behavior, 2011, 6, 1851-1854.	2.4	3
116	The transcription activation and homodimerization ofLotus japonicusNod factor Signaling Pathway2 protein. Plant Signaling and Behavior, 2013, 8, e26457.	2.4	3
117	Spatial regulation of resource allocation in response to nutritional availability. Journal of Theoretical Biology, 2020, 486, 110078.	1.7	3
118	Assessment of Polygala paniculata (Polygalaceae) characteristics for evolutionary studies of legume–rhizobia symbiosis. Journal of Plant Research, 2020, 133, 109-122.	2.4	3
119	Mechanisms of Rice Endophytic Bradyrhizobial Cell Differentiation and Its Role in Nitrogen Fixation. Microbes and Environments, 2020, 35, n/a.	1.6	3
120	Taxonomic revision of <i>Termitomyces</i> species found in Ryukyu Archipelago, Japan, based on phylogenetic analyses with three loci. Mycoscience, 2022, 63, 33-38.	0.8	3
121	Lotus japonicus HAR1 regulates root morphology locally and systemically under a moderate nitrate condition in the absence of rhizobia. Planta, 2022, 255, 95.	3.2	3
122	Current Development of Lotus japonicus Research. Journal of Plant Research, 2000, 113, 449-449.	2.4	2
123	Isolation and Characterization of Arbuscules from Roots of an Increased-arbuscule-forming Mutant of Lotus japonicus. Annals of Botany, 2007, 100, 1599-1603.	2.9	2
124	Morphological Effects of Sinefungin, an Inhibitor of S-Adenosylmethionine-Dependent Methyltransferases, on Anabaena sp. PCC 7120. Microbes and Environments, 2008, 23, 346-349.	1.6	2
125	The evolution of symbiotic systems. Cellular and Molecular Life Sciences, 2011, 68, 1283-1284.	5.4	2

126 "Activator―and "Inibitor―Leading to Generation and Stabilization of Symbiotic Organ Development in Legume. , 2005, , 179-182.

#	Article	IF	CITATIONS
127	Grafting analysis indicates that malfunction ofTRICOTin the root causes a nodulation-deficient phenotype inLotus japonicus. Plant Signaling and Behavior, 2013, 8, e23497.	2.4	0
128	Genes for Autoregulation of Nodulation. Compendium of Plant Genomes, 2014, , 73-78.	0.5	0
129	Fluorescent Labeling of the Cyst Nematode <i>Heterodera glycines</i> in Deep-Tissue Live Imaging. Cytologia, 2017, 82, 251-259.	0.6	0
130	Wild Accessions and Mutant Resources. Compendium of Plant Genomes, 2014, , 211-220.	0.5	0