Siyuan Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2889143/publications.pdf

Version: 2024-02-01

45 14,704 24 42 papers citations h-index g-index

51 51 51 22724 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
2	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
3	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	13.5	1,794
4	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
5	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	7.7	1,282
6	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
7	Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nature Genetics, 2017, 49, 349-357.	9.4	476
8	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	2.9	416
9	Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Research, 2015, 25, 316-327.	2.4	343
10	Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nature Genetics, 2018, 50, 708-717.	9.4	212
11	TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Research, 2018, 46, D1144-D1149.	6.5	179
12	PRADA: pipeline for RNA sequencing data analysis. Bioinformatics, 2014, 30, 2224-2226.	1.8	147
13	The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nature Communications, 2014, 5, 3963.	5.8	143
14	ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State. Cell Reports, 2014, 6, 313-324.	2.9	106
15	Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Reports, 2019, 29, 1675-1689.e9.	2.9	103
16	Multigene signature for predicting prognosis of patients with 1p19q co-deletion diffuse glioma. Neuro-Oncology, 2017, 19, 786-795.	0.6	87
17	A modular master regulator landscape controls cancer transcriptional identity. Cell, 2021, 184, 334-351.e20.	13.5	78
18	A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes and Development, 2013, 27, 1462-1472.	2.7	74

#	Article	IF	CITATIONS
19	Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation. Nature Genetics, 2017, 49, 75-86.	9.4	74
20	Integrated analysis of telomerase enzymatic activity unravels an association with cancer stemness and proliferation. Nature Communications, 2021, 12, 139.	5.8	39
21	Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma. Cancer Research, 2015, 75, 4131-4142.	0.4	38
22	Silent Mutations Make Some Noise. Cell, 2014, 156, 1129-1131.	13.5	33
23	Profiles of brain metastases: Prioritization of therapeutic targets. International Journal of Cancer, 2018, 143, 3019-3026.	2.3	31
24	M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Research, 2022, 82, 1872-1889.	0.4	29
25	Studying a Complex Tumor. Cancer Journal (Sudbury, Mass), 2012, 18, 107-114.	1.0	26
26	<i>EGFR</i> Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clinical Cancer Research, 2020, 26, 1395-1407.	3.2	26
27	MSK1-Mediated \hat{l}^2 -Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma. Molecular Cancer Therapeutics, 2016, 15, 1656-1668.	1.9	25
28	Signature-scoring methods developed for bulk samples are not adequate for cancer single-cell RNA sequencing data. ELife, 2022, 11 , .	2.8	22
29	Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. Cell Reports, 2018, 24, 463-478.e5.	2.9	21
30	<i>ARID1B</i> alterations identify aggressive tumors in neuroblastoma. Oncotarget, 2017, 8, 45943-45950.	0.8	19
31	Tie2–FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma. Cancer Research, 2019, 79, 5088-5101.	0.4	17
32	Preclinical therapeutic efficacy of a novel blood-brain barrier-penetrant dual PI3K/mTOR inhibitor with preferential response in PI3K/PTEN mutant glioma. Oncotarget, 2017, 8, 21741-21753.	0.8	16
33	Prospective Clinical Sequencing of Adult Glioma. Molecular Cancer Therapeutics, 2019, 18, 991-1000.	1.9	15
34	APOBEC3G acts as a therapeutic target in mesenchymal gliomas by sensitizing cells to radiation-induced cell death. Oncotarget, 2017, 8, 54285-54296.	0.8	15
35	Murine models of IDH-wild-type glioblastoma exhibit spatial segregation of tumor initiation and manifestation during evolution. Nature Communications, 2020, 11, 3669.	5.8	14
36	MYC Regulation of D2HGDH and L2HGDH Influences the Epigenome and Epitranscriptome. Cell Chemical Biology, 2020, 27, 538-550.e7.	2.5	14

#	Article	IF	CITATIONS
37	SNAI2-Mediated Repression of <i>BIM</i> Protects Rhabdomyosarcoma from Ionizing Radiation. Cancer Research, 2021, 81, 5451-5463.	0.4	13
38	TMIC-14. TUMOR EVOLUTION OF GLIOMA INTRINSIC GENE EXPRESSION SUBTYPE ASSOCIATES WITH IMMUNOLOGICAL CHANGES IN THE MICROENVIRONMENT. Neuro-Oncology, 2016, 18, vi202-vi202.	0.6	11
39	Benchmarking: contexts and details matter. Genome Biology, 2017, 18, 129.	3.8	9
40	PCAT: an integrated portal for genomic and preclinical testing data of pediatric cancer patient-derived xenograft models. Nucleic Acids Research, 2021, 49, D1321-D1327.	6.5	9
41	Approaches to identifying drug resistance mechanisms to clinically relevant treatments in childhood rhabdomyosarcoma. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 80-89.	0.9	2
42	Intragenic breakpoint. Cell Cycle, 2013, 12, 3705-3706.	1.3	1
43	Advances in Computational Genomics. BioMed Research International, 2015, 2015, 1-2.	0.9	O
44	GENO-36GLIOMA SPHERE-FORMING CELLS REVEAL INTRINSIC GLOBAL HYPERMETHYLATION ASSOCIATED WITH GBM RADIATION RESISTANCE. Neuro-Oncology, 2015, 17, v99.5-v100.	0.6	0
45	TMOD-31. AN INFLAMMATION RESPONSE GENE SIGNATURE IS ASSOCIATED WITH PROGNOSIS OF GLIOMA PATIENTS WITH 1p/19q CO-DELETION TUMORS. Neuro-Oncology, 2016, 18, vi213-vi213.	0.6	0