Jeong Ho Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2888701/publications.pdf Version: 2024-02-01

IFONC HO CHO

#	Article	IF	CITATIONS
1	Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistorsÂonÂplastic. Nature Materials, 2008, 7, 900-906.	13.3	1,077
2	Highâ€Performance Perovskite–Graphene Hybrid Photodetector. Advanced Materials, 2015, 27, 41-46.	11.1	753
3	Stretchable and Multimodal All Graphene Electronic Skin. Advanced Materials, 2016, 28, 2601-2608.	11.1	493
4	Photoresponse of CsPbBr ₃ and Cs ₄ PbBr ₆ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2017, 8, 565-570.	2.1	395
5	High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2010, 10, 3464-3466.	4.5	390
6	Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Letters, 2011, 11, 4642-4646.	4.5	351
7	Ion Gel-Gated Polymer Thin-Film Transistors: Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability. Journal of Physical Chemistry C, 2009, 113, 8972-8981.	1.5	325
8	Highâ€Performance Triboelectric Nanogenerators Based on Electrospun Polyvinylidene Fluoride–Silver Nanowire Composite Nanofibers. Advanced Functional Materials, 2018, 28, 1703778.	7.8	291
9	Active Matrix Electronic Skin Strain Sensor Based on Piezopotentialâ€Powered Graphene Transistors. Advanced Materials, 2015, 27, 3411-3417.	11.1	287
10	Optoelectronic Synapse Based on IGZOâ€Alkylated Graphene Oxide Hybrid Structure. Advanced Functional Materials, 2018, 28, 1804397.	7.8	280
11	Dye-Sensitized MoS ₂ Photodetector with Enhanced Spectral Photoresponse. ACS Nano, 2014, 8, 8285-8291.	7.3	268
12	Large-scale organic nanowire lithography and electronics. Nature Communications, 2013, 4, 1773.	5.8	262
13	Large-Area MXene Electrode Array for Flexible Electronics. ACS Nano, 2019, 13, 11392-11400.	7.3	224
14	Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor Characteristics. Journal of the American Chemical Society, 2008, 130, 10556-10564.	6.6	221
15	Sensing with MXenes: Progress and Prospects. Advanced Materials, 2021, 33, e2005846.	11.1	219
16	Solubilityâ€Induced Ordered Polythiophene Precursors for Highâ€Performance Organic Thinâ€Film Transistors. Advanced Functional Materials, 2009, 19, 1200-1206.	7.8	214
17	Lowâ€Temperature, Solutionâ€Processed and Alkali Metal Doped ZnO for Highâ€Performance Thinâ€Film Transistors. Advanced Materials, 2012, 24, 834-838.	11.1	202
18	Transparent, Lowâ€Power Pressure Sensor Matrix Based on Coplanarâ€Gate Graphene Transistors. Advanced Materials, 2014, 26, 4735-4740.	11.1	185

#	Article	IF	CITATIONS
19	Stable Superhydrophobic Organicâ^'Inorganic Hybrid Films by Electrostatic Self-Assembly. Journal of Physical Chemistry B, 2005, 109, 20773-20778.	1.2	184
20	Printed Subâ€2 V Gelâ€Electrolyteâ€Gated Polymer Transistors and Circuits. Advanced Functional Materials, 2010, 20, 587-594.	7.8	180
21	Importance of Solubilizing Group and Backbone Planarity in Low Band Gap Polymers for High Performance Ambipolar field-effect Transistors. Chemistry of Materials, 2012, 24, 1316-1323.	3.2	168
22	Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. Journal of Physical Chemistry Letters, 2018, 9, 1573-1583.	2.1	167
23	Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale, 2014, 6, 2821.	2.8	166
24	Modulation of Quantum Tunneling <i>via</i> a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p–n Junction. ACS Nano, 2017, 11, 9143-9150.	7.3	164
25	A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale, 2014, 6, 11828-11834.	2.8	161
26	Epitaxial Synthesis of Molybdenum Carbide and Formation of a Mo ₂ C/MoS ₂ Hybrid Structure <i>via</i> Chemical Conversion of Molybdenum Disulfide. ACS Nano, 2018, 12, 338-346.	7.3	148
27	Effect of side chain length on molecular ordering and field-effect mobility in poly(3-alkylthiophene) transistors. Organic Electronics, 2006, 7, 514-520.	1.4	147
28	Multibit MoS ₂ Photoelectronic Memory with Ultrahigh Sensitivity. Advanced Materials, 2016, 28, 9196-9202.	11.1	145
29	Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors. Applied Physics Letters, 2007, 90, 132106.	1.5	140
30	Comparison of the Mobility–Carrier Density Relation in Polymer and Single rystal Organic Transistors Employing Vacuum and Liquid Gate Dielectrics. Advanced Materials, 2009, 21, 2174-2179.	11.1	140
31	Graphene-based flexible and stretchable thin film transistors. Nanoscale, 2012, 4, 4870.	2.8	135
32	Low-voltage and high-field-effect mobility organic transistors with a polymer insulator. Applied Physics Letters, 2006, 88, 072101.	1.5	130
33	Vertical organic synapse expandable to 3D crossbar array. Nature Communications, 2020, 11, 4595.	5.8	130
34	Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Applied Materials & Interfaces, 2014, 6, 12380-12387.	4.0	128
35	Semiconductorâ€Dielectric Blends: A Facile All Solution Route to Flexible Allâ€Organic Transistors. Advanced Materials, 2009, 21, 4243-4248.	11.1	120
36	Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. Nano Letters, 2016, 16, 2580-2585.	4.5	119

#	Article	IF	CITATIONS
37	High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications, 2020, 11, 2874.	5.8	114
38	Multifunctional Hybrid Fabrics with Thermally Stable Superhydrophobicity. Advanced Materials, 2010, 22, 2138-2141.	11.1	113
39	Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. Chemistry of Materials, 2016, 28, 180-187.	3.2	112
40	High-mobility low-temperature ZnO transistors with low-voltage operation. Applied Physics Letters, 2010, 96, .	1.5	110
41	Coplanar-Gate Transparent Graphene Transistors and Inverters on Plastic. ACS Nano, 2012, 6, 8646-8651.	7.3	110
42	Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals. Nano Letters, 2015, 15, 2542-2547.	4.5	110
43	Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66, 104095.	8.2	100
44	MoS ₂ –InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity. ACS Applied Materials & Interfaces, 2016, 8, 8576-8582.	4.0	98
45	Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. Journal of Materials Chemistry, 2010, 20, 2549.	6.7	97
46	Effects of metal penetration into organic semiconductors on the electrical properties of organic thin film transistors. Applied Physics Letters, 2006, 89, 132101.	1.5	96
47	Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization. ACS Applied Materials & Interfaces, 2014, 6, 3299-3304.	4.0	91
48	Lowâ€Voltage Complementary Electronics from Ionâ€Gelâ€Gated Vertical Van der Waals Heterostructures. Advanced Materials, 2016, 28, 3742-3748.	11.1	91
49	Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor. Applied Physics Letters, 2007, 90, 132104.	1.5	90
50	2D MXene–TiO ₂ Core–Shell Nanosheets as a Data‣torage Medium in Memory Devices. Advanced Materials, 2020, 32, e1907633.	11.1	89
51	2D–Organic Hybrid Heterostructures for Optoelectronic Applications. Advanced Materials, 2019, 31, e1803831.	11.1	86
52	Highly Tunable Charge Transport in Layer-by-Layer Assembled Graphene Transistors. ACS Nano, 2012, 6, 2432-2440.	7.3	84
53	Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors. Applied Physics Letters, 2006, 88, 082102.	1.5	82
54	An Organic Vertical Fieldâ€Effect Transistor with Undersideâ€Doped Graphene Electrodes. Advanced Materials, 2016, 28, 4803-4810.	11.1	82

#	Article	IF	CITATIONS
55	Halide Welding for Silver Nanowire Network Electrode. ACS Applied Materials & Interfaces, 2017, 9, 30779-30785.	4.0	82
56	Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. ACS Nano, 2018, 12, 254-262.	7.3	81
57	Fingerprintâ€Inspired Conducting Hierarchical Wrinkles for Energyâ€Harvesting Eâ€5kin. Advanced Functional Materials, 2019, 29, 1903580.	7.8	79
58	Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor. Applied Physics Letters, 2005, 87, 152105.	1.5	77
59	Change of molecular ordering in soluble acenes via solvent annealing and its effect on field-effect mobility. Applied Physics Letters, 2007, 91, 092105.	1.5	75
60	Robust Superhydrophobic Mats based on Electrospun Crystalline Nanofibers Combined with a Silane Precursor. ACS Applied Materials & Interfaces, 2010, 2, 658-662.	4.0	75
61	Oriented Grains with Preferred Lowâ€Angle Grain Boundaries in Halide Perovskite Films by Pressureâ€Induced Crystallization. Advanced Energy Materials, 2018, 8, 1702369.	10.2	74
62	Roll-to-roll preparation of silver-nanowire transparent electrode and its application to large-area organic light-emitting diodes. Organic Electronics, 2017, 41, 190-197.	1.4	73
63	A polymer brush organic interlayer improves the overlying pentacene nanostructure and organic field-effect transistor performance. Journal of Materials Chemistry, 2011, 21, 15580.	6.7	71
64	Mechanically Robust Silver Nanowires Network for Triboelectric Nanogenerators. Advanced Functional Materials, 2016, 26, 7717-7724.	7.8	71
65	Multifunctional Smart Textronics with Blowâ€Spun Nonwoven Fabrics. Advanced Functional Materials, 2019, 29, 1900025.	7.8	71
66	Halide Perovskite Nanopillar Photodetector. ACS Nano, 2018, 12, 8564-8571.	7.3	70
67	A multiple negative differential resistance heterojunction device and its circuit application to ternary static random access memory. Nanoscale Horizons, 2020, 5, 654-662.	4.1	70
68	Large-Area CVD-Grown Sub-2 V ReS ₂ Transistors and Logic Gates. Nano Letters, 2017, 17, 2999-3005.	4.5	68
69	Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors. Carbon, 2015, 88, 165-172.	5.4	67
70	Universal three-dimensional crosslinker for all-photopatterned electronics. Nature Communications, 2020, 11, 1520.	5.8	65
71	Organic Fieldâ€Effect Transistor Memory Devices Using Discrete Ferritin Nanoparticleâ€Based Gate Dielectrics. Small, 2013, 9, 3784-3791.	5.2	64
72	Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array. ACS Nano, 2018, 12, 9381-9389.	7.3	64

#	Article	IF	CITATIONS
73	Wide-Range Controllable n-Doping of Molybdenum Disulfide (MoS ₂) through Thermal and Optical Activation. ACS Nano, 2015, 9, 2368-2376.	7.3	60
74	Superamphiphilic Janus Fabric. Langmuir, 2010, 26, 19159-19162.	1.6	59
75	Transparent and Colorless Polyimides Containing Multiple Trifluoromethyl Groups as Gate Insulators for Flexible Organic Transistors with Superior Electrical Stability. ACS Applied Materials & Interfaces, 2020, 12, 18739-18747.	4.0	58
76	Optoelectronic Inâ€Gaâ€Znâ€O Memtransistors for Artificial Vision System. Advanced Functional Materials, 2020, 30, 2002325.	7.8	57
77	Photo-patternable ion gel-gated graphene transistors and inverters on plastic. Nanotechnology, 2014, 25, 014002.	1.3	56
78	Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film. Nanoscale, 2015, 7, 6798-6804.	2.8	56
79	Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes. ACS Nano, 2018, 12, 4894-4902.	7.3	56
80	Self-Healable Hydrogel–Liquid Metal Composite Platform Enabled by a 3D Printed Stamp for a Multimodular Sensor System. ACS Applied Materials & Interfaces, 2020, 12, 9824-9832.	4.0	56
81	Enhanced Electrical Properties of Reduced Graphene Oxide Multilayer Films by <i>In-Situ</i> Insertion of a TiO ₂ Layer. ACS Nano, 2011, 5, 8884-8891.	7.3	55
82	β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interface. Nano Energy, 2020, 77, 105262.	8.2	55
83	Crack-Enhanced Microfluidic Stretchable E-Skin Sensor. ACS Applied Materials & Interfaces, 2017, 9, 44678-44686.	4.0	54
84	Nanoscopic Management of Molecular Packing and Orientation of Small Molecules by a Combination of Linear and Branched Alkyl Side Chains. ACS Nano, 2014, 8, 5988-6003.	7.3	52
85	Trap-induced photoresponse of solution-synthesized MoS ₂ . Nanoscale, 2016, 8, 9193-9200.	2.8	52
86	Recent Advances on Multivalued Logic Gates: A Materials Perspective. Advanced Science, 2021, 8, 2004216.	5.6	52
87	Gate-Tunable Synaptic Dynamics of Ferroelectric-Coupled Carbon-Nanotube Transistors. ACS Applied Materials & Interfaces, 2020, 12, 4707-4714.	4.0	51
88	Quantum Confinement Effects in Transferrable Silicon Nanomembranes and Their Applications on Unusual Substrates. Nano Letters, 2013, 13, 5600-5607.	4.5	49
89	High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polymer bilayer insulators. Applied Physics Letters, 2009, 94, .	1.5	48
90	Polyelectrolyte Interlayer for Ultra-Sensitive Organic Transistor Humidity Sensors. ACS Applied Materials & Interfaces, 2013, 5, 8591-8596.	4.0	48

#	Article	IF	CITATIONS
91	Electrolyteâ€Gated Graphene Schottky Barrier Transistors. Advanced Materials, 2015, 27, 5875-5881.	11.1	47
92	Large-Area Ti ₃ C ₂ T _{<i>x</i>} -MXene Coating: Toward Industrial-Scale Fabrication and Molecular Separation. ACS Nano, 2021, 15, 8860-8869.	7.3	47
93	High-Performance Stablen-Type Indenofluorenedione Field-Effect Transistors. Chemistry of Materials, 2011, 23, 4038-4044.	3.2	45
94	Graphene-Graphene Oxide Floating Gate Transistor Memory. Small, 2015, 11, 311-318.	5.2	44
95	Large-area niobium disulfide thin films as transparent electrodes for devices based on two-dimensional materials. Nanoscale, 2018, 10, 1056-1062.	2.8	44
96	Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe ₂) Biosensors. ACS Applied Materials & Interfaces, 2018, 10, 17639-17645.	4.0	44
97	Artificial stimulus-response system capable of conscious response. Science Advances, 2021, 7, .	4.7	44
98	Highâ€Performance Perovskiteâ€Based Blue Lightâ€Emitting Diodes with Operational Stability by Using Organic Ammonium Cations as Passivating Agents. Advanced Functional Materials, 2021, 31, 2005553.	7.8	43
99	Allâ€Solutionâ€Processed Van der Waals Heterostructures for Waferâ€Scale Electronics. Advanced Materials, 2022, 34, e2106110.	11.1	43
100	Ultraclean and Direct Transfer of a Wafer‣cale MoS ₂ Thin Film onto a Plastic Substrate. Advanced Materials, 2017, 29, 1603928.	11.1	42
101	Electrically Controllable Molecularization of Terahertz Metaâ€Atoms. Advanced Materials, 2018, 30, e1802760.	11.1	42
102	Enhancement of Field-Effect Mobility and Stability of Poly(3-hexylthiophene) Field-Effect Transistors by Conformational Change. Journal of Physical Chemistry C, 2008, 112, 1705-1710.	1.5	41
103	Polymer Brush As a Facile Dielectric Surface Treatment for High-Performance, Stable, Soluble Acene-Based Transistors. Chemistry of Materials, 2010, 22, 5377-5382.	3.2	41
104	Electrospun smart fabrics that display pH-responsive tunable wettability. Soft Matter, 2012, 8, 10238.	1.2	41
105	Apparent pH sensitivity of solution-gated graphene transistors. Nanoscale, 2015, 7, 7540-7544.	2.8	41
106	Roomâ€Temperature Selfâ€Organizing Characteristics of Soluble Acene Fieldâ€Effect Transistors. Advanced Functional Materials, 2008, 18, 560-565.	7.8	40
107	Energy-Level Alignment at Interfaces Between Gold and Poly(3-hexylthiophene) Films with Two Different Molecular Structures. Electrochemical and Solid-State Letters, 2006, 9, G317.	2.2	39
108	Black phosphorus nonvolatile transistor memory. Nanoscale, 2016, 8, 9107-9112.	2.8	39

#	Article	IF	CITATIONS
109	Decoupling the Biasâ€Stressâ€Induced Charge Trapping in Semiconductors and Gateâ€Dielectrics of Organic Transistors Using a Double Stretchedâ€Exponential Formula. Advanced Functional Materials, 2013, 23, 690-696.	7.8	38
110	Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. ACS Nano, 2016, 10, 11037-11043.	7.3	37
111	Capacitively Coupled Hybrid Ion Gel and Carbon Nanotube Thinâ€Film Transistors for Low Voltage Flexible Logic Circuits. Advanced Functional Materials, 2018, 28, 1802610.	7.8	37
112	Oxygenâ€Detecting Synaptic Device for Realization of Artificial Autonomic Nervous System for Maintaining Oxygen Homeostasis. Advanced Materials, 2020, 32, e2002653.	11.1	37
113	Enhancing Performance and Stability of Tin Halide Perovskite Light Emitting Diodes via Coordination Engineering of Lewis Acid–Base Adducts. Advanced Functional Materials, 2021, 31, 2106974.	7.8	37
114	Enhancing crystallinity of C60 layer by thickness-control of underneath pentacene layer for high mobility C60/pentacene ambipolar transistors. Applied Physics Letters, 2013, 102, 043306.	1.5	35
115	Schottkyâ€Barrierâ€Controllable Graphene Electrode to Boost Rectification in Organic Vertical P–N Junction Photodiodes. Advanced Functional Materials, 2017, 27, 1704475.	7.8	35
116	In/Ga-Free, Inkjet-Printed Charge Transfer Doping for Solution-Processed ZnO. ACS Applied Materials & Interfaces, 2013, 5, 9765-9769.	4.0	33
117	Switchable Tack in Side-Chain Liquid Crystalline Polymersâ€. Macromolecules, 2003, 36, 2009-2014.	2.2	32
118	Crystallinity-Controlled Naphthalene- <i>alt</i> -diketopyrrolopyrrole Copolymers for High-Performance Ambipolar Field Effect Transistors. Journal of Physical Chemistry C, 2012, 116, 26204-26213.	1.5	32
119	The structural, optical and electrical characterization of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs. Journal of Materials Chemistry C, 2013, 1, 1383.	2.7	32
120	Surface Energy Engineered, Highâ€Resolution Micropatterning of Solutionâ€Processed Reduced Graphene Oxide Thin Films. Advanced Materials, 2013, 25, 894-898.	11.1	32
121	Flexible and Mechanically Robust Organic Light-Emitting Diodes Based on Photopatternable Silver Nanowire Electrodes. Journal of Physical Chemistry C, 2016, 120, 22012-22018.	1.5	32
122	Biologically Plausible Artificial Synaptic Array: Replicating Ebbinghaus' Memory Curve with Selective Attention. Advanced Materials, 2021, 33, e2007782.	11.1	32
123	A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coordination Chemistry Reviews, 2022, 465, 214567.	9.5	32
124	High Crystalline Dithienosilole-Cored Small Molecule Semiconductor for Ambipolar Transistor and Nonvolatile Memory. ACS Applied Materials & Interfaces, 2014, 6, 6589-6597.	4.0	31
125	Organic Dye Graphene Hybrid Structures with Spectral Color Selectivity. Advanced Functional Materials, 2016, 26, 6593-6600.	7.8	31
126	Ambipolar transport based on CVD-synthesized ReSe ₂ . 2D Materials, 2017, 4, 025014.	2.0	31

#	Article	IF	CITATIONS
127	Structure–Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 40503-40515.	4.0	31
128	Tunable Charge Injection via Solution-Processed Reduced Graphene Oxide Electrode for Vertical Schottky Barrier Transistors. Chemistry of Materials, 2018, 30, 636-643.	3.2	31
129	Piezotronic graphene barristor: Efficient and interactive modulation of Schottky barrier. Nano Energy, 2018, 50, 598-605.	8.2	31
130	3Dâ€Printed Sugar Scaffold for Highâ€Precision and Highly Sensitive Active and Passive Wearable Sensors. Advanced Science, 2020, 7, 1902521.	5.6	31
131	Electroplated core–shell nanowire network electrodes for highly efficient organic light-emitting diodes. Nano Convergence, 2022, 9, 1.	6.3	31
132	Work Function Engineering of Electrohydrodynamic-Jet-Printed PEDOT:PSS Electrodes for High-Performance Printed Electronics. ACS Applied Materials & Interfaces, 2020, 12, 17799-17805.	4.0	30
133	Actively Operable Thermoresponsive Smart Windows for Reducing Energy Consumption. ACS Applied Materials & amp; Interfaces, 2020, 12, 33838-33845.	4.0	30
134	Self-Organization Characteristics of Soluble Pentacene on Wettability-Controlled Patterned Substrate for Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2010, 114, 2329-2333.	1.5	29
135	Counterion-Induced Reversibly Switchable Transparency in Smart Windows. ACS Nano, 2011, 5, 7397-7403.	7.3	29
136	Monolithic Metal Oxide Transistors. ACS Nano, 2015, 9, 4288-4295.	7.3	29
137	Organic field-effect transistors integrated with Ti ₂ CT _x electrodes. Nanoscale, 2018, 10, 5191-5197.	2.8	29
138	Ion-Gel-Gated Graphene Optical Modulator with Hysteretic Behavior. ACS Applied Materials & Interfaces, 2018, 10, 1836-1845.	4.0	29
139	Graphene nano-floating gate transistor memory on plastic. Nanoscale, 2014, 6, 15286-15292.	2.8	28
140	Metallic Grid Electrode Fabricated via Flow Coating for High-Performance Flexible Piezoelectric Nanogenerators. Journal of Physical Chemistry C, 2015, 119, 7802-7808.	1.5	28
141	Petal-Inspired Diffractive Grating on a Wavy Surface: Deterministic Fabrications and Applications to Colorizations and LED Devices. ACS Applied Materials & Interfaces, 2017, 9, 9935-9944.	4.0	28
142	Direct synthesis of large-area continuous ReS ₂ films on a flexible glass at low temperature. 2D Materials, 2017, 4, 025057.	2.0	28
143	Photosensitive Graphene P–N Junction Transistors and Ternary Inverters. ACS Applied Materials & Interfaces, 2018, 10, 12897-12903.	4.0	28
144	Vertically Stacked CVD-Grown 2D Heterostructure for Wafer-Scale Electronics. ACS Applied Materials & Interfaces, 2019, 11, 35444-35450.	4.0	27

#	Article	IF	CITATIONS
145	Double Negative Differential Resistance Device Based on Hafnium Disulfide/Pentacene Hybrid Structure. Advanced Science, 2020, 7, 2000991.	5.6	27
146	Comb-type polymer-hybridized MXene nanosheets dispersible in arbitrary polar, nonpolar, and ionic solvents. Science Advances, 2022, 8, eabl5299.	4.7	27
147	Interpenetrating polymer network dielectrics for high-performance organic field-effect transistors. Journal of Materials Chemistry, 2011, 21, 6968.	6.7	26
148	Electrical Transport through Single Nanowires of Dialkyl Perylene Diimide. Journal of Physical Chemistry C, 2013, 117, 10743-10749.	1.5	26
149	High Performance of Low Band Gap Polymer-Based Ambipolar Transistor Using Single-Layer Graphene Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 6002-6012.	4.0	26
150	Printed In-Ga-Zn-O drop-based thin-film transistors sintered using intensely pulsed white light. RSC Advances, 2015, 5, 78655-78659.	1.7	26
151	Largeâ€Area Schottky Barrier Transistors Based on Vertically Stacked Graphene–Metal Oxide Heterostructures. Advanced Functional Materials, 2017, 27, 1700651.	7.8	26
152	Area-Selective Chemical Doping on Solution-Processed MoS ₂ Thin-Film for Multi-Valued Logic Gates. Nano Letters, 2022, 22, 570-577.	4.5	26
153	Low-voltage solution-processed graphene transistors based on chemically and solvothermally reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 13068.	6.7	25
154	Correlation between Crystallinity, Charge Transport, and Electrical Stability in an Ambipolar Polymer Field-Effect Transistor Based on Poly(naphthalene- <i>alt</i> diketopyrrolopyrrole). Journal of Physical Chemistry C, 2013, 117, 11479-11486.	1.5	25
155	Water-Gel for Gating Graphene Transistors. Nano Letters, 2014, 14, 2610-2616.	4.5	25
156	High-responsivity PtSe2 photodetector enhanced by photogating effect. Applied Physics Letters, 2021, 118, .	1.5	25
157	Evaluation of the Adhesion Properties of Inorganic Materials with High Surface Energies. Langmuir, 2004, 20, 10174-10178.	1.6	24
158	Control of the electrical and adhesion properties of metal/organic interfaces with self-assembled monolayers. Applied Physics Letters, 2005, 86, 171906.	1.5	24
159	Ladder-Type Silsesquioxane Copolymer Gate Dielectrics for High-Performance Organic Transistors and Inverters. Journal of Physical Chemistry C, 2016, 120, 3501-3508.	1.5	24
160	Light-transformable and -healable triboelectric nanogenerators. Nano Energy, 2017, 38, 412-418.	8.2	24
161	Improvement of efficiency of polymer solar cell by incorporation of the planar shaped monomer in low band gap polymer. Synthetic Metals, 2012, 162, 768-774.	2.1	23
162	Alkyl Side Chain Length Modulates the Electronic Structure and Electrical Characteristics of Poly(3-alkylthiophene) Thin Films. Journal of Physical Chemistry C, 2013, 117, 11764-11769.	1.5	23

#	Article	IF	CITATIONS
163	Polyol synthesis of silver nanostructures: Inducing the growth of nanowires by a heat-up process. Chemical Physics Letters, 2014, 602, 10-15.	1.2	23
164	Proton-Conductor-Gated MoS ₂ Transistors with Room Temperature Electron Mobility of >100 cm ² V ^{–1} s ^{–1} . Chemistry of Materials, 2018, 30, 4527-4535.	3.2	23
165	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	1.3	23
166	Metal nanowire–polymer matrix hybrid layer for triboelectric nanogenerator. Nano Energy, 2019, 58, 227-233.	8.2	22
167	Aqueous-Alcohol-Processable High-Mobility Semiconducting Copolymers with Engineered Oligo(ethylene glycol) Side Chains. Chemistry of Materials, 2020, 32, 1111-1119.	3.2	22
168	Solvent-vapor-annealed A–D–A-type semicrystalline conjugated small molecules for flexible ambipolar field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 5698-5706.	2.7	21
169	Photogating in the Graphene–Dye–Graphene Sandwich Heterostructure. ACS Applied Materials & Interfaces, 2019, 11, 23474-23481.	4.0	21
170	Electroplated Silver–Nickel Core–Shell Nanowire Network Electrodes for Highly Efficient Perovskite Nanoparticle Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39479-39486.	4.0	21
171	Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromolecular Research, 2013, 21, 636-640.	1.0	20
172	Robust multifunctional superhydrophobic organic–inorganic hybrid macroporous coatings and films. Polymer, 2014, 55, 2661-2666.	1.8	20
173	A Nonchlorinated Solvent-Processable Fluorinated Planar Conjugated Polymer for Flexible Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 28817-28827.	4.0	20
174	Structure and Chain Orientation in Thin Films of Side-Chain Liquid Crystalline Polymers. Langmuir, 2003, 19, 7021-7025.	1.6	19
175	Photoresponsive Transistors Based on a Dual Acceptor-Containing Low-Bandgap Polymer. ACS Applied Materials & Interfaces, 2017, 9, 19011-19020.	4.0	19
176	Junction Welding Techniques for Metal Nanowire Network Electrodes. Macromolecular Research, 2018, 26, 1066-1073.	1.0	19
177	Scalable Two-Dimensional Lateral Metal/Semiconductor Junction Fabricated with Selective Synthetic Integration of Transition-Metal-Carbide (Mo ₂ C)/-Dichalcogenide (MoS ₂). ACS Applied Materials & Interfaces, 2019, 11, 47190-47196.	4.0	19
178	Solution-Processed MoS ₂ Film with Functional Interfaces via Precursor-Assisted Chemical Welding. ACS Applied Materials & Interfaces, 2021, 13, 12221-12229.	4.0	19
179	Generalized Scheme for High Performing Photodetectors with a pâ€īype 2D Channel Layer and nâ€īype Nanoparticles. Small, 2018, 14, 1703065.	5.2	18
180	Multiâ€State Heterojunction Transistors Based on Fieldâ€Effect Tunneling–Transport Transitions. Advanced Materials, 2021, 33, e2101243.	11.1	18

Jeong Ho Cho

#	Article	IF	CITATIONS
181	Precise control of surface wettability of mixed monolayers using a simple wiping method. Thin Solid Films, 2006, 515, 2079-2084.	0.8	17
182	Waferâ€Scale Patterning of Reduced Graphene Oxide Electrodes by Transferâ€andâ€Reverse Stamping for High Performance OFETs. Small, 2013, 9, 2817-2825.	5.2	17
183	pn-Heterojunction Effects of Perylene Tetracarboxylic Diimide Derivatives on Pentacene Field-Effect Transistor. ACS Applied Materials & Interfaces, 2015, 7, 2025-2031.	4.0	17
184	Impact of Terminal End-Group of Acceptor–Donor–Acceptor-type Small Molecules on Molecular Packing and Photovoltaic Properties. ACS Applied Materials & Interfaces, 2018, 10, 39952-39961.	4.0	17
185	Selectively Metallized 2D Materials for Simple Logic Devices. ACS Applied Materials & Interfaces, 2019, 11, 18571-18579.	4.0	17
186	Functionalized Organic Material Platform for Realization of Ternary Logic Circuit. ACS Applied Materials & Interfaces, 2020, 12, 6119-6126.	4.0	17
187	On-Demand Doping of Graphene by Stamping with a Chemically Functionalized Rubber Lens. ACS Nano, 2015, 9, 4354-4361.	7.3	16
188	A-D-A Type Semiconducting Small Molecules with Bis(alkylsulfanyl)methylene Substituents and Control of Charge Polarity for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 41842-41851.	4.0	16
189	Carbon nanotube ferroelectric random access memory cell based on omega-shaped ferroelectric gate. Carbon, 2020, 162, 195-200.	5.4	16
190	A new rigid planar low band gap PTTDPP-DT-DTT polymer for organic transistors and performance improvement through the use of a binary solvent system. Dyes and Pigments, 2016, 126, 138-146.	2.0	15
191	Low-Band-Gap Polymer-Based Ambipolar Transistors and Inverters Fabricated Using a Flow-Coating Method. Journal of Physical Chemistry C, 2016, 120, 13865-13872.	1.5	15
192	Roll-to-roll redox-welding and embedding for silver nanowire network electrodes. Nanoscale, 2018, 10, 18627-18634.	2.8	15
193	Defect-Free Copolymer Gate Dielectrics for Gating MoS ₂ Transistors. Journal of Physical Chemistry C, 2018, 122, 12193-12199.	1.5	15
194	Reactive metal contact at indium–tin–oxide/self-assembled monolayer interfaces. Applied Physics Letters, 2006, 88, 102104.	1.5	14
195	Increased environmental stability of a tungsten bronze NIR-absorbing window. Fibers and Polymers, 2013, 14, 2077-2082.	1.1	14
196	Pressure-induced chemical enhancement in Raman scattering from graphene–Rhodamine 6G–graphene sandwich structures. Carbon, 2015, 89, 318-327.	5.4	14
197	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. Chemistry of Materials, 2017, 29, 4008-4013.	3.2	14
198	Remote Gating of Schottky Barrier for Transistors and Their Vertical Integration. ACS Nano, 2019, 13, 7877-7885.	7.3	14

#	Article	IF	CITATIONS
199	Color-Selective Schottky Barrier Modulation for Optoelectric Logic. ACS Nano, 2020, 14, 16036-16045.	7.3	14
200	Rational Band Engineering of an Organic Double Heterojunction for Artificial Synaptic Devices with Enhanced State Retention and Linear Update of Synaptic Weight. ACS Applied Materials & Interfaces, 2020, 12, 10737-10745.	4.0	14
201	Completely foldable electronics based on homojunction polymer transistors and logics. Science Advances, 2021, 7, .	4.7	14
202	Effects of Physical Treatment of ITO Electrodes on the Electrical Properties of Pentacene Thin-Film Transistors. Electrochemical and Solid-State Letters, 2007, 10, H239.	2.2	13
203	Discontinuous pn-Heterojunction for Organic Thin Film Transistors. Journal of Physical Chemistry C, 2014, 118, 18146-18152.	1.5	13
204	Graphene Phototransistors Sensitized by Cu _{2–<i>x</i>} Se Nanocrystals with Short Amine Ligands. Journal of Physical Chemistry C, 2017, 121, 5436-5443.	1.5	13
205	Percolation-Limited Dual Charge Transport in Vertical p <i>–</i> n Heterojunction Schottky Barrier Transistors. Nano Letters, 2020, 20, 3585-3592.	4.5	13
206	Rectifying optoelectronic memory based on WSe ₂ /graphene heterostructures. Nanoscale Advances, 2021, 3, 4952-4960.	2.2	13
207	Complementary Driving between 2D Heterostructures and Surface Functionalization for Surpassing Binary Logic Devices. ACS Applied Materials & Interfaces, 2021, 13, 8692-8699.	4.0	13
208	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	3.6	12
209	Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array. Nanotechnology, 2014, 25, 505604.	1.3	12
210	Graphene Transistors Gated by Salted Proton Conductor. Advanced Electronic Materials, 2016, 2, 1600122.	2.6	12
211	Ladder-type silsesquioxane copolymer gate dielectrics for gating solution-processed IGZO field-effect transistors. Organic Electronics, 2017, 43, 41-46.	1.4	12
212	Dicyanodistyrylbenzene-Based Copolymers for Ambipolar Organic Field-Effect Transistors with Well-Balanced Hole and Electron Mobilities. Macromolecules, 2018, 51, 8258-8267.	2.2	12
213	All-Inkjet-Printed Vertical Heterostructure for Wafer-Scale Electronics. ACS Nano, 2019, 13, 8213-8221.	7.3	12
214	Multifunctional Self-Combustion Additives Strategy to Fabricate Highly Responsive Hybrid Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 41674-41686.	4.0	12
215	Schottky junction photodiode based on graphene—organic semiconductor heterostructure. Journal of Industrial and Engineering Chemistry, 2020, 89, 233-238.	2.9	12
216	Selectively patterned highly conductive poly(3,4-ethylenedioxythiophene)-tosylate electrodes for high performance organic field-effect transistors. Applied Physics Letters, 2009, 95, 233509.	1.5	11

#	Article	IF	CITATIONS
217	Observation of the Inverse Giant Piezoresistance Effect in Silicon Nanomembranes Probed by Ultrafast Terahertz Spectroscopy. Nano Letters, 2014, 14, 6942-6948.	4.5	11
218	One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS ₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & Interfaces, 2017, 9, 26357-26362.	4.0	11
219	Influence of 3D morphology on the performance of all-polymer solar cells processed using environmentally benign nonhalogenated solvents. Nano Energy, 2020, 77, 105106.	8.2	11
220	Stress Dissipation Encoded Silk Fibroin Electrode for the Athleteâ€Beneficial Silk Bioelectronics. Advanced Science, 2022, 9, e2105420.	5.6	11
221	Exploiting Poly(dimethylsiloxane)-Modified Tips To Evaluate Frictional Behavior by Friction Force Microscopy. Langmuir, 2004, 20, 11499-11503.	1.6	10
222	Effect of curing conditions of a poly(4-vinylphenol)gate dielectric on the performance of a pentacene-based thin film transistor. Macromolecular Research, 2009, 17, 436-440.	1.0	10
223	Chemically Tunable Ultrathin Silsesquiazane Interlayer for n-Type and p-Type Organic Transistors on Flexible Plastic. ACS Applied Materials & Interfaces, 2014, 6, 22807-22814.	4.0	10
224	Well-Balanced Carrier Mobilities in Ambipolar Transistors Based on Solution-Processable Low Band Gap Small Molecules. Journal of Physical Chemistry C, 2015, 119, 16414-16423.	1.5	10
225	Synthesis, Molecular Packing, and Electrical Properties of New Regioisomeric n-type Semiconducting Molecules with Modification of Alkyl Substituents Position. ACS Applied Materials & Interfaces, 2019, 11, 47170-47181.	4.0	10
226	Heterogeneous Integration of 2D Materials: Recent Advances in Fabrication and Functional Device Applications. Nano, 2019, 14, 1930009.	0.5	10
227	Monolithic Tandem Multicolor Image Sensor Based on Electrochromic Colorâ€Radix Demultiplexing. Advanced Materials, 2021, 33, e2102725.	11.1	10
228	Tetrabranched Photo-Crosslinker Enables Micrometer-Scale Patterning of Light-Emitting Super Yellow for High-Resolution OLEDs. ACS Photonics, 2021, 8, 2519-2528.	3.2	10
229	Gateâ€Đeterministic Remote Doping Enables Highly Retentive Grapheneâ€MXene Hybrid Memory Devices on Plastic. Advanced Functional Materials, 2022, 32, .	7.8	10
230	Spontaneous reduction and dispersion of graphene nano-platelets with in situ synthesized hydrazine assisted by hexamethyldisilazane. Journal of Materials Chemistry, 2012, 22, 20477.	6.7	9
231	Silsesquiazane/organic polymer blends as organic-inorganic hybrid materials. Fibers and Polymers, 2012, 13, 1113-1119.	1.1	9
232	Directed self-assembly of organic semiconductors via confined evaporative capillary flows for use in organic field-effect transistors. Organic Electronics, 2014, 15, 2322-2327.	1.4	9
233	Atomically-thin molecular layers for electrode modification of organic transistors. Nanoscale, 2015, 7, 14100-14108.	2.8	9
234	Cold-Trap-Mediated Broad Dynamic Photodetection in Graphene–Organic Hybrid Photonic Barristors. Journal of the American Chemical Society, 2021, 143, 879-890.	6.6	9

#	Article	IF	CITATIONS
235	Mixed urushiol and laccol compositions in natural lacquers: Convenient evaluation method and its effect on the physicochemical properties of lacquer coatings. Progress in Organic Coatings, 2021, 154, 106195.	1.9	9
236	Enhancement of Hole Injection in Organic TFTs by Ozone Treatment of Indium Tin Oxide Electrodes. Electrochemical and Solid-State Letters, 2007, 10, H156.	2.2	8
237	Counterions-exchangeable, multifunctional polyelectrolyte fabrics. Journal of Materials Chemistry, 2012, 22, 14656.	6.7	8
238	Micropatterned Single-Walled Carbon Nanotube Electrodes for Use in High-Performance Transistors and Inverters. ACS Applied Materials & amp; Interfaces, 2014, 6, 9664-9670.	4.0	8
239	X-DNA Origami-Networked Core-Supported Lipid Stratum. Langmuir, 2015, 31, 912-916.	1.6	8
240	Low-voltage complementary inverters based on ion gel-gated ReS2 and BP transistors. FlatChem, 2017, 5, 33-39.	2.8	8
241	Metal-agglomeration-suppressed growth of MoS ₂ and MoSe ₂ films with small sulfur and selenium molecules for high mobility field effect transistor applications. Nanoscale, 2018, 10, 15213-15221.	2.8	8
242	Intense-pulsed-UV-converted perhydropolysilazane gate dielectrics for organic field-effect transistors and logic gates. RSC Advances, 2019, 9, 3169-3175.	1.7	8
243	pâ€CuInS ₂ /nâ€Polymer Semiconductor Heterojunction for Photoelectrochemical Hydrogen Evolution. ChemSusChem, 2020, 13, 6651-6659.	3.6	8
244	Riskâ€Perceptional and Feedback ontrolled Response System Based on NO ₂ â€Detecting Artificial Sensory Synapse. Advanced Functional Materials, 2022, 32, .	7.8	8
245	Non–von Neumann multi-input spike signal processing enabled by an artificial synaptic multiplexer. Science Advances, 2022, 8, .	4.7	8
246	Surface Viscoelasticity of an Organic Interlayer Affects the Crystalline Nanostructure of an Organic Semiconductor and Its Electrical Performance. Journal of Physical Chemistry C, 2012, 116, 21673-21678.	1.5	7
247	Versatile threshold voltage control of OTFTs via discontinuous pn -heterojunction formation. Organic Electronics, 2014, 15, 3439-3444.	1.4	7
248	Size-tunable and scalable synthesis of uniform copper nanocrystals. RSC Advances, 2015, 5, 2756-2761.	1.7	7
249	Processing temperature control of a diketopyrrolopyrrole-alt-thieno[2,3-b]thiophene polymer for high-mobility thin-film transistors and polymer solar cells with high open-circuit voltages. Polymer, 2016, 105, 79-87.	1.8	7
250	Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly. ACS Applied Materials & Interfaces, 2016, 8, 15543-15550.	4.0	7
251	High-Performance Polymer Semiconductor-Based Nonvolatile Memory Cells with Nondestructive Read-Out. Journal of Physical Chemistry C, 2017, 121, 24352-24357.	1.5	7
252	Design of Wavy Ag Microwire Array for Mechanically Stable, Multimodal Vibrational Haptic Interface. Advanced Functional Materials, 2019, 29, 1902703.	7.8	7

#	Article	IF	CITATIONS
253	Enhancement of Electron Injection Using Reactive Self-Assembled Monolayer in Organic Electronic Devices. Electrochemical and Solid-State Letters, 2006, 9, G147.	2.2	6
254	Crystalline nanostructure and morphology of TriF-IF-dione for high-performance stable n-type field-effect transistors. Journal of Materials Chemistry, 2012, 22, 14617.	6.7	6
255	Gate- and Light-Tunable pn Heterojunction Microwire Arrays Fabricated via Evaporative Assembly. ACS Applied Materials & Interfaces, 2017, 9, 3857-3864.	4.0	6
256	Solar Cells: Oriented Grains with Preferred Lowâ€Angle Grain Boundaries in Halide Perovskite Films by Pressureâ€Induced Crystallization (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870045.	10.2	6
257	Wafer-scale and patternable synthesis of NbS ₂ for electrodes of organic transistors and logic gates. Journal of Materials Chemistry C, 2019, 7, 8599-8606.	2.7	6
258	Flexible and transparent graphene complementary logic gates. Molecular Systems Design and Engineering, 2019, 4, 484-490.	1.7	6
259	Infrared study of carrier scattering mechanism in ion-gated graphene. Applied Physics Letters, 2019, 114, 083503.	1.5	6
260	Inhomogeneous work-function hysteresis in chemical vapor deposition-grown graphene field-effect devices. Carbon, 2021, 173, 594-599.	5.4	6
261	Commensurate Assembly of C ₆₀ on Black Phosphorus for Mixedâ€Đimensional van der Waals Transistors. Small, 2022, 18, e2105916.	5.2	6
262	Enhancement of electron injection in polymer light-emitting diodes with a supramolecular insulating nanolayer on the bottom cathode. Applied Physics Letters, 2006, 89, 083508.	1.5	5
263	Real-time x-ray scattering study of the initial growth of organic crystals on polymer brushes. Journal of Chemical Physics, 2014, 140, .	1.2	5
264	Electrically Adaptive and Shape-Changeable Invertible Microlens. ACS Applied Materials & Interfaces, 2021, 13, 10397-10408.	4.0	5
265	A general fruit acid chelation route for eco-friendly and ambient 3D printing of metals. Nature Communications, 2022, 13, 104.	5.8	5
266	Modulation of the heterogeneous senescence of human mesenchymal stem cells on chemically-modified surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 90, 36-40.	2.5	4
267	Temperature sensing behavior of poly(3,4-ethylenedioxythiophene) thin film. Synthetic Metals, 2013, 185-186, 52-55.	2.1	4
268	Ultralightweight Strain-Responsive 3D Graphene Network. Journal of Physical Chemistry C, 2019, 123, 9884-9893.	1.5	4
269	Aqueous-processable, naphthalene diimide-based polymers for eco-friendly fabrication of high-performance, n-type organic electrolyte-gated transistors. Science China Chemistry, 2022, 65, 973-978.	4.2	4
270	Effect of HAuCl[sub 4] Doping on the Contact Properties of Polymer Thin-Film Transistors. Electrochemical and Solid-State Letters, 2009, 12, H312.	2.2	3

#	Article	IF	CITATIONS
271	Graphene Photodetectors: High–Performance Perovskite–Graphene Hybrid Photodetector (Adv.) Tj ETQq1 1	0.784314 11.1	rggBT /Overl
272	Hysteresis Behavior of the Donor–Acceptor-Type Ambipolar Semiconductor for Non-Volatile Memory Applications. Micromachines, 2021, 12, 301.	1.4	3
273	Fabrication of van der Waals heterostructures through direct growth of rhenium disulfide on van der Waals surfaces. Applied Surface Science, 2021, 544, 148865.	3.1	3
274	Composition-Dependent Optoelectronic Properties of Mixed 2D/3D Metal Halide Perovskite Films for Light-Emitting Diodes. ACS Applied Energy Materials, 0, , .	2.5	3
275	Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers. Cell Reports Physical Science, 2022, 3, 100800.	2.8	3
276	Deterministic Multimodal Perturbation Enables Neuromorphic-Compatible Signal Multiplexing. , 2022, 4, 102-110.		3
277	Energy-Level Alignment at Interfaces between Gold and Poly(3-hexylthiophene) Films with two Different Molecular Structures. AIP Conference Proceedings, 2007, , .	0.3	2
278	Diketopyrrolopyrrole-based Small Molecule for Application in Solution Processed Organic Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 111-119.	0.4	2
279	Multivalued Logic Gates: Recent Advances on Multivalued Logic Gates: A Materials Perspective (Adv.) Tj ETQq1 1	0.784314	rgBT /Oved
280	Self-Patterned Stretchable Electrode Based on Silver Nanowire Bundle Mesh Developed by Liquid Bridge Evaporation. Nanomaterials, 2021, 11, 2865.	1.9	2
281	Environmentally stable NIRâ€absorbing window. Pigment and Resin Technology, 2012, 41, 311-315.	0.5	1
282	Photoâ€crosslinkable NIRâ€ebsorbing window with environmental stability. Pigment and Resin Technology, 2013, 42, 170-174.	0.5	1
283	Photoresponse of Physically Oxidized Graphene Sensitized by an Organic Dye. Journal of Physical Chemistry C, 2017, 121, 8188-8195.	1.5	1
284	Photodiodes: Schottkyâ€Barrier ontrollable Graphene Electrode to Boost Rectification in Organic Vertical P–N Junction Photodiodes (Adv. Funct. Mater. 48/2017). Advanced Functional Materials, 2017, 27, 1770286.	7.8	1
285	Negative Differential Resistance: Double Negative Differential Resistance Device Based on Hafnium Disulfide/Pentacene Hybrid Structure (Adv. Sci. 19/2020). Advanced Science, 2020, 7, 2070110.	5.6	1
286	Effect of Phase State of Self-Assembled Monolayers on Pentacene Growth and Thin Film Transistors Characteristics. AIP Conference Proceedings, 2007, , .	0.3	0
287	Kinetic and thermodynamic analyses of adhesion of a peptide, Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), and human formyl peptide receptor (hFPR). Biotechnology Letters, 2010, 32, 773-779.	1.1	0
288	Application of Plywood with Water-Based Phenol-Formaldehyde Resin Impregnated Linerboards as Formwork for Concrete Structure. Journal of Adhesion Science and Technology, 2011, 25, 169-178.	1.4	0

#	Article	IF	CITATIONS
289	Interface Modification of Cathode Electrode Using Dimmethyldicyanoquinonediimine as a Charge Transfer Layer in Organic Photovoltaic Cell. Journal of Nanoscience and Nanotechnology, 2012, 12, 3543-3546.	0.9	0
290	Characteristics of Vertical Type Organic Light Emitting Transistor Using IF-dione-F as an Active Layer and DMDCNQI as a n Type Buffer Layer. Molecular Crystals and Liquid Crystals, 2012, 566, 87-93.	0.4	0
291	Studies on the Characteristics and Durability of a Vertical Type Organic Transistor Using Indenofluorenedione Derivatives as an N-Type Active Material. Journal of Nanoscience and Nanotechnology, 2013, 13, 8016-8019.	0.9	0
292	<i>A Special Section on</i> Selected Peer-Reviewed Articles from the International Conference on Advanced Electromaterials 2011 (ICAE2011). Journal of Nanoscience and Nanotechnology, 2013, 13, 3254-3259.	0.9	0
293	Characteristics of Vertical Type Polymer Light Emitting Transistor Using Dimethyldicyanoquinonediimine as a <i>N</i> -Type Buffer Layer. Journal of Nanoscience and Nanotechnology, 2014, 14, 6314-6317.	0.9	0
294	Terahertz Metamaterials: Electrically Controllable Molecularization of Terahertz Meta-Atoms (Adv.) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 5

295	Solution Processible Organic–Inorganic Hybrid Moisture Barrier Film. Science of Advanced Materials, 2014, 6, 2338-2342.	0.1	0
296	Ultrafast terahertz spectroscopy of the inverse giant piezoresistance effect in silicon nanomembranes. , 2015, , .		0

Allâ€Solutionâ€Processed Van der Waals Heterostructures for Waferâ€Scale Electronics (Adv. Mater.) Tj ETQq1 1 0.784314 rgBT /Over