
Sepp D Kohlwein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2888270/publications.pdf Version: 2024-02-01

SEDD D KOHLWEIN

#	Article	IF	CITATIONS
1	FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling. Cell Metabolism, 2012, 15, 279-291.	16.2	852
2	Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane. Journal of Cell Biology, 1999, 146, 741-754.	5.2	449
3	Metabolism and Regulation of Glycerolipids in the Yeast <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 190, 317-349.	2.9	437
4	Fatty acid synthesis and elongation in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 255-270.	2.4	384
5	Identification and Characterization of Major Lipid Particle Proteins of the Yeast <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 1999, 181, 6441-6448.	2.2	288
6	Obese Yeast: Triglyceride Lipolysis Is Functionally Conserved from Mammals to Yeast. Journal of Biological Chemistry, 2006, 281, 491-500.	3.4	273
7	Lipid droplet autophagy in the yeast <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2014, 25, 290-301.	2.1	245
8	A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. FEBS Journal, 2001, 268, 2351-2361.	0.2	237
9	Cubic membranes: a legend beyond the Flatland* of cell membrane organization. Journal of Cell Biology, 2006, 173, 839-844.	5.2	225
10	Cdk1/Cdc28-Dependent Activation of the Major Triacylglycerol Lipase Tgl4 in Yeast Links Lipolysis to Cell-Cycle Progression. Molecular Cell, 2009, 33, 53-63.	9.7	216
11	Tsc13p Is Required for Fatty Acid Elongation and Localizes to a Novel Structure at the Nuclear-Vacuolar Interface in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 109-125.	2.3	201
12	Lipid Droplets and Peroxisomes: Key Players in Cellular Lipid Homeostasis <i>or</i> A Matter of Fat—Store 'em Up or Burn 'em Down. Genetics, 2013, 193, 1-50.	2.9	193
13	Good Fat, Essential Cellular Requirements for Triacylglycerol Synthesis to Maintain Membrane Homeostasis in Yeast. Journal of Biological Chemistry, 2009, 284, 30981-30993.	3.4	184
14	Extracellular nucleases and extracellular DNA play important roles in <i>Vibrio cholerae</i> biofilm formation. Molecular Microbiology, 2011, 82, 1015-1037.	2.5	183
15	Dual Localization of Squalene Epoxidase, Erg1p, in Yeast Reflects a Relationship between the Endoplasmic Reticulum and Lipid Particles. Molecular Biology of the Cell, 1998, 9, 375-386.	2.1	177
16	Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment. Molecular Cell, 2019, 73, 1001-1014.e8.	9.7	173
17	Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. FEBS Journal, 2000, 267, 1075-1082.	0.2	158
18	The Spatial Organization of Lipid Synthesis in the Yeast Saccharomyces cerevisiae Derived from Large Scale Green Fluorescent Protein Tagging and High Resolution Microscopy. Molecular and Cellular Proteomics, 2005, 4, 662-672.	3.8	150

#	Article	IF	CITATIONS
19	Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes. Journal of Biological Chemistry, 2012, 287, 11164-11173.	3.4	146
20	Mitochondrial Phosphate–Carrier Deficiency: A Novel Disorder of Oxidative Phosphorylation. American Journal of Human Genetics, 2007, 80, 478-484.	6.2	142
21	A versatile ultra-high performance LC-MS method for lipid profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 951-952, 119-128.	2.3	141
22	High-Level Intracellular Expression of Hydroxynitrile Lyase from the Tropical Rubber TreeHevea brasiliensisin Microbial Hosts. Protein Expression and Purification, 1997, 11, 61-71.	1.3	126
23	A role for seipin in lipid droplet dynamics and inheritance in yeast. Journal of Cell Science, 2011, 124, 3894-3904.	2.0	121
24	Chapter 6 Cubic Membranes. International Review of Cell and Molecular Biology, 2009, 274, 275-342.	3.2	119
25	Triacylglycerol Homeostasis: Insights from Yeast. Journal of Biological Chemistry, 2010, 285, 15663-15667.	3.4	117
26	Interdependent regulation of p53 and miR-34a in chronic lymphocytic leukemia. Cell Cycle, 2010, 9, 2836-2840.	2.6	116
27	Identification of a Cardiolipin-specific Phospholipase Encoded by the Gene CLD1 (YGR110W) in Yeast. Journal of Biological Chemistry, 2009, 284, 11572-11578.	3.4	113
28	The Yeast Plasma Membrane Protein Alr1 Controls Mg2+ Homeostasis and Is Subject to Mg2+-dependent Control of Its Synthesis and Degradation. Journal of Biological Chemistry, 2001, 276, 16216-16222.	3.4	111
29	Molecular Cloning of the Full-length cDNA of (S)-Hydroxynitrile Lyase from Hevea brasiliensis. Journal of Biological Chemistry, 1996, 271, 5884-5891.	3.4	107
30	Inhibition of Acetyl Coenzyme A Carboxylase Activity Restores Expression of the INO1 Gene in a snf1 Mutant Strain of Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 5710-5722.	2.3	100
31	Characterization and Function in Vivo of Two Novel Phospholipases B/Lysophospholipases fromSaccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 28121-28127.	3.4	99
32	An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. Journal of the Royal Society Interface, 2013, 10, 20120760.	3.4	97
33	Nutritional requirements of the BY series of <i>Saccharomyces cerevisiae</i> strains for optimum growth. FEMS Yeast Research, 2012, 12, 796-808.	2.3	96
34	Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1450-1464.	2.4	96
35	The N-terminal Region of Comparative Gene Identification-58 (CGI-58) Is Important for Lipid Droplet Binding and Activation of Adipose Triglyceride Lipase. Journal of Biological Chemistry, 2010, 285, 12289-12298.	3.4	94
36	The Saccharomyces cerevisiae YBR159w Gene Encodes the 3-Ketoreductase of the Microsomal Fatty Acid Elongase. Journal of Biological Chemistry, 2002, 277, 35440-35449.	3.4	89

#	Article	IF	CITATIONS
37	Na+/Ca2+ Exchange Facilitates Ca2+-dependent Activation of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 1999, 274, 29529-29535.	3.4	87
38	Organelle Structure, Function, and Inheritance in Yeast: A Role for Fatty Acid Synthesis?. Cell, 1997, 88, 431-434.	28.9	83
39	Elo1p-Dependent Carboxy-Terminal Elongation of C14:1Δ9 to C16:1Δ11 Fatty Acids inSaccharomyces cerevisiae. Journal of Bacteriology, 2000, 182, 3655-3660.	2.2	83
40	Yeast Oxidosqualene Cyclase (Erg7p) Is a Major Component of Lipid Particles. Journal of Biological Chemistry, 2002, 277, 2406-2412.	3.4	80
41	Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids. Developmental Cell, 2014, 29, 729-739.	7.0	78
42	Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, Erg4p, from the yeastSaccharomyces cerevisiae. FEBS Letters, 2000, 470, 83-87.	2.8	75
43	Identification of a novel, Ca2+-dependent phospholipase D with preference for phosphatidylserine and phosphatidylethanolamine inSaccharomyces cerevisiae. FEBS Letters, 1996, 393, 236-240.	2.8	73
44	Dissecting BAR Domain Function in the Yeast Amphiphysins Rvs161 and Rvs167 during Endocytosis. Molecular Biology of the Cell, 2010, 21, 3054-3069.	2.1	73
45	Lipid Droplet-associated Proteins Are Involved in the Biosynthesis and Hydrolysis of Triacylglycerol in Mycobacterium bovis Bacillus Calmette-Guérin. Journal of Biological Chemistry, 2010, 285, 21662-21670.	3.4	72
46	S-Adenosyl-L-homocysteine Hydrolase, Key Enzyme of Methylation Metabolism, Regulates Phosphatidylcholine Synthesis and Triacylglycerol Homeostasis in Yeast. Journal of Biological Chemistry, 2008, 283, 23989-23999.	3.4	71
47	Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle, 2010, 9, 2908-2914.	2.6	71
48	Uptake of fatty acids by the yeasts, Saccharomyces uvarum and Saccharomycopsis lipolytica. Lipids and Lipid Metabolism, 1984, 792, 310-317.	2.6	69
49	Cis and trans regulatory elements required for regulation of theCHO1gene ofSaccharomyces cerevisiae. Nucleic Acids Research, 1992, 20, 1411-1418.	14.5	63
50	A Block in Endoplasmic Reticulum-to-Golgi Trafficking Inhibits Phospholipid Synthesis and Induces Neutral Lipid Accumulation. Journal of Biological Chemistry, 2008, 283, 25735-25751.	3.4	63
51	The emergence of lipid droplets in yeast: current status and experimental approaches. Current Genetics, 2013, 59, 231-242.	1.7	63
52	The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 50-58.	2.4	61
53	Coordination of Storage Lipid Synthesis and Membrane Biogenesis. Journal of Biological Chemistry, 2011, 286, 1696-1708.	3.4	61
54	Yeast and cancer cells – common principles in lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 314-326.	2.4	60

#	Article	IF	CITATIONS
55	The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the signalling pathway. FEMS Yeast Research, 2004, 5, 157-167.	2.3	58
56	Subcellular localization of yeast Sec14 homologues and their involvement in regulation of phospholipid turnover. FEBS Journal, 2003, 270, 3133-3145.	0.2	57
57	Absence of the peroxiredoxin Pmp20 causes peroxisomal protein leakage and necrotic cell death. Free Radical Biology and Medicine, 2008, 45, 1115-1124.	2.9	55
58	Identification of an Insulin-regulated Lysophospholipase with Homology to Neuropathy Target Esterase. Journal of Biological Chemistry, 2008, 283, 5908-5917.	3.4	55
59	Do viruses subvert cholesterol homeostasis to induce host cubic membranes?. Trends in Cell Biology, 2010, 20, 371-379.	7.9	55
60	Quantitative modeling of triacylglycerol homeostasis in yeast – metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. FEBS Journal, 2008, 275, 5552-5563.	4.7	54
61	Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1063-1071.	2.4	54
62	Fasting induces cyanide-resistant respiration and oxidative stress in the amoeba Chaos carolinensis : implications for the cubic structural transition in mitochondrial membranes. Protoplasma, 2002, 219, 160-167.	2.1	53
63	Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy. Biochemical Journal, 2006, 396, 147-155.	3.7	52
64	The beauty of the yeast: Live cell microscopy at the limits of optical resolution. Microscopy Research and Technique, 2000, 51, 511-529.	2.2	48
65	Adaptation to oxidative stress induced by polyunsaturated fatty acids in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 283-287.	2.4	48
66	YPL.db: the Yeast Protein Localization database. Nucleic Acids Research, 2002, 30, 80-83.	14.5	43
67	Vascular Bioactivation of Nitroglycerin Is Catalyzed by Cytosolic Aldehyde Dehydrogenase-2. Circulation Research, 2012, 110, 385-393.	4.5	43
68	A novel strategy for constructing N-terminal chromosomal fusions to green fluorescent protein in the yeastSaccharomyces cerevisiae. FEBS Letters, 2000, 485, 29-34.	2.8	41
69	Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica. Microbiology (United Kingdom), 2003, 149, 589-600.	1.8	41
70	Saccharomyces cerevisiae strain expressing a plant fatty acid desaturase produces polyunsaturated fatty acids and is susceptible to oxidative stress induced by lipid peroxidation. Free Radical Biology and Medicine, 2006, 40, 897-906.	2.9	39
71	Microscopic Analysis of Lipid Droplet Metabolism and Dynamics in Yeast. Methods in Molecular Biology, 2008, 457, 151-163.	0.9	39
72	Obese and anorexic yeasts: Experimental models to understand the metabolic syndrome and lipotoxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 222-229.	2.4	38

#	Article	IF	CITATIONS
73	Treatment of the budding yeast Saccharomyces cerevisiae with the lipid peroxidation product 4-HNE provokes a temporary cell cycle arrest in G1 phase. Free Radical Biology and Medicine, 1998, 25, 682-687.	2.9	37
74	A Novel Cold-Sensitive Allele of the Rate-Limiting Enzyme of Fatty Acid Synthesis, Acetyl Coenzyme A Carboxylase, Affects the Morphology of the Yeast Vacuole through Acylation of Vac8p. Molecular and Cellular Biology, 2000, 20, 2984-2995.	2.3	37
75	Application of inductively coupled plasma mass spectrometry to phospholipid analysis. Journal of Analytical Atomic Spectrometry, 2004, 19, 80-84.	3.0	35
76	Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba <i>Chaos</i> mitochondria. FASEB Journal, 2009, 23, 2866-2871.	0.5	35
77	Nanopatterned polymer substrates promote endothelial proliferation by initiation of β-catenin transcriptional signaling. Acta Biomaterialia, 2012, 8, 2953-2962.	8.3	35
78	Enhanced membrane protein expression by engineering increased intracellular membrane production. Microbial Cell Factories, 2013, 12, 122.	4.0	35
79	Imaging-Based Live Cell Yeast Screen Identifies Novel Factors Involved in Peroxisome Assembly. Journal of Proteome Research, 2009, 8, 20-27.	3.7	33
80	Lipid-induced cell dysfunction and cell death: Lessons from yeast. Current Hypertension Reports, 2007, 9, 455-461.	3.5	32
81	Lipid-dependent Subcellular Relocalization of the Acyl Chain Desaturase in Yeast. Molecular Biology of the Cell, 2002, 13, 4429-4442.	2.1	31
82	YPL.db2: the yeast protein localization database, version 2.0. Yeast, 2005, 22, 213-218.	1.7	31
83	The yeastmic2mutant is defective in the formation of mannosyl-diinositolphosphorylceramide1. FEBS Letters, 1997, 411, 211-214.	2.8	30
84	S-Adenosyl-l-homocysteine hydrolase in yeast: key enzyme of methylation metabolism and coordinated regulation with phospholipid synthesis. FEBS Letters, 2004, 577, 501-506.	2.8	30
85	Phospholipids: synthesis, sorting, subcellular traffic - the yeast approach. Trends in Cell Biology, 1996, 6, 260-266.	7.9	29
86	Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1077-85.	7.1	27
87	Increased stress parameter synthesis in the yeast Saccharomyces cerevisiae after treatment with 4-hydroxy-2-nonenal 1. FEBS Letters, 1997, 405, 11-15.	2.8	26
88	Low levels of Ypt protein prenylation cause vesicle polarization defects and thermosensitive growth that can be suppressed by genes involved in cell wall maintenance. Molecular Microbiology, 2002, 35, 1295-1311.	2.5	26
89	Molecular cloning of the yeast OPI3 gene as a high copy number suppressor of the cho2 mutation. Current Genetics, 1993, 23, 95-101.	1.7	25
90	Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver. Journal of Lipid Research, 2009, 50, 2514-2523.	4.2	25

#	Article	IF	CITATIONS
91	Regulation of Sphingolipid Biosynthesis by the Morphogenesis Checkpoint Kinase Swe1. Journal of Biological Chemistry, 2016, 291, 2524-2534.	3.4	25
92	Identification of an ARS element and development of a high efficiency transformation system for Pichia guilliermondii. Current Genetics, 1999, 36, 215-221.	1.7	22
93	Diacylglycerol triggers Rim101 pathway–dependent necrosis in yeast: a model for lipotoxicity. Cell Death and Differentiation, 2018, 25, 767-783.	11.2	22
94	ATPâ€binding cassette transporters and sterol <i>O</i> â€acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. FASEB Journal, 2015, 29, 4682-4694.	0.5	21
95	Lipid Extraction from Yeast Cells. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot085449.	0.3	21
96	Assessment of electrophile damage in a human brain endothelial cell line utilizing a clickable alkyne analog of 2-chlorohexadecanal. Free Radical Biology and Medicine, 2016, 90, 59-74.	2.9	15
97	Thin-Layer Chromatography to Separate Phospholipids and Neutral Lipids from Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot085456.	0.3	15
98	(S)-Hydroxynitrile Lyase from Hevea brasiliensis. Annals of the New York Academy of Sciences, 1996, 799, 707-712.	3.8	14
99	Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism. Journal of Biological Chemistry, 2016, 291, 11865-11875.	3.4	14
100	Functional expression of bacterial \hat{l}^2 -glucuronidase and its use as a reporter system in the yeastYarrowia lipolytica. Yeast, 1993, 9, 71-75.	1.7	13
101	Microscopic and Spectroscopic Techniques to Investigate Lipid Droplet Formation and Turnover in Yeast. Methods in Molecular Biology, 2015, 1270, 289-305.	0.9	13
102	Interaction of Pik1p and Sjl proteins in membrane trafficking. FEMS Yeast Research, 2005, 5, 363-371.	2.3	12
103	A Neurotoxic Phospholipase A2 Impairs Yeast Amphiphysin Activity and Reduces Endocytosis. PLoS ONE, 2012, 7, e40931.	2.5	11
104	Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor. Cold Spring Harbor Protocols, 2017, 2017, pdb.top078956.	0.3	11
105	The Fidgety Yeast: Focus on High-Resolution Live Yeast Cell Microscopy. Methods in Molecular Biology, 2009, 548, 75-99.	0.9	11
106	Enhanced Ca ²⁺ Entry and Tyrosine Phosphorylation Mediate Nanostructure-Induced Endothelial Proliferation. Journal of Nanomaterials, 2013, 2013, 1-10.	2.7	10
107	Yeast Translational Activator Cbs2p: Mitochondrial Targeting and Effect of Overexpression. Biological Chemistry, 2000, 381, 1175-83.	2.5	9
108	Quantitative Imaging of Lipid Metabolism in Yeast: From 4D Analysis to High Content Screens of Mutant Libraries. Methods in Cell Biology, 2012, 108, 345-365.	1.1	9

#	Article	IF	CITATIONS
109	Derivatization and Gas Chromatography of Fatty Acids from Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot085464.	0.3	8
110	Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation. Cells, 2021, 10, 269.	4.1	8
111	Effect of inositol starvation on glycerolipid metabolism in Saccharomyces uvarum. Lipids and Lipid Metabolism, 1983, 753, 430-438.	2.6	7
112	Sterol Binding Assay Using Surface Plasmon Fluorescence Spectroscopy. Analytical Chemistry, 2006, 78, 547-555.	6.5	7
113	Isolation of mitochondria with cubic membrane morphology reveals specific ionic requirements for the preservation of membrane structure. Protoplasma, 2015, 252, 689-696.	2.1	7
114	Lipid droplets and lamellar bodies – from innocent bystanders to prime targets of lipid research for combating human diseases. European Journal of Lipid Science and Technology, 2006, 108, 541-543.	1.5	5
115	Quantitative Analysis of Yeast Phospholipids and Sterols by High-Performance Liquid Chromatography–Evaporative Light-Scattering Detection. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot085472.	0.3	4
116	Single Yeast Cell Imaging. Methods in Molecular Biology, 2014, 1205, 91-109.	0.9	3
117	Digital imaging of diabetic endothelial cells. , 2001, 4260, 1.		1