Damien Hermand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2888052/publications.pdf Version: 2024-02-01

DAMIEN HEDMAND

#	Article	IF	CITATIONS
1	Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation. Molecular Cell, 2022, 82, 404-419.e9.	9.7	34
2	Epitranscriptomic mapping of RNA modifications at single-nucleotide resolution using rhodamine sequencing (Rho-seq). STAR Protocols, 2022, 3, 101369.	1.2	3
3	The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biology, 2022, 19, 735-750.	3.1	8
4	Anticodon Wobble Uridine Modification by Elongator at the Crossroad of Cell Signaling, Differentiation, and Diseases. Epigenomes, 2020, 4, 7.	1.8	8
5	RNA polymerase II CTD S2P is dispensable for embryogenesis but mediates exit from developmental diapause in <i>C. elegans</i> . Science Advances, 2020, 6, .	10.3	9
6	Reciprocal regulation of TORC signaling and tRNA modifications by Elongator enforces nutrient-dependent cell fate. Science Advances, 2019, 5, eaav0184.	10.3	27
7	Chromatin Immunoprecipitation-Polymerase Chain Reaction (ChIP-PCR) Detects Methylation, Acetylation, and Ubiquitylation in S. pombe. Methods in Molecular Biology, 2018, 1721, 25-34.	0.9	8
8	Repression of Cell Differentiation by a cis-Acting lincRNA in Fission Yeast. Current Biology, 2018, 28, 383-391.e3.	3.9	15
9	SL-quant: a fast and flexible pipeline to quantify spliced leader trans-splicing events from RNA-seq data. GigaScience, 2018, 7, .	6.4	10
10	A conserved role of the RSC chromatin remodeler in the establishment of nucleosome-depleted regions. Current Genetics, 2017, 63, 187-193.	1.7	14
11	Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the ste11 master regulator locus. ELife, 2016, 5, .	6.0	19
12	Fission Yeast Cdk7 Controls Gene Expression through both Its CAK and C-Terminal Domain Kinase Activities. Molecular and Cellular Biology, 2015, 35, 1480-1490.	2.3	13
13	Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine. Journal of Experimental Medicine, 2015, 212, 2057-2075.	8.5	67
14	Promoter nucleosome dynamics regulated by signalling through the CTD code. ELife, 2015, 4, e09008.	6.0	17
15	Modification of tRNALysUUU by Elongator Is Essential for Efficient Translation of Stress mRNAs. PLoS Genetics, 2013, 9, e1003647.	3.5	115
16	Regulation of entry into gametogenesis by Ste11: the endless game. Biochemical Society Transactions, 2013, 41, 1673-1678.	3.4	14
17	A coordinated codon-dependent regulation of translation by Elongator. Cell Cycle, 2012, 11, 4524-4529.	2.6	43
18	Distinct requirement of RNA polymerase II CTD phosphorylations in budding and fission yeast. Transcription, 2012, 3, 231-234.	3.1	19

DAMIEN HERMAND

#	Article	IF	CITATIONS
19	Determining proteome-wide expression levels using reverse protein arrays in fission yeast. Nature Protocols, 2012, 7, 1830-1835.	12.0	7
20	Cdk11-CyclinL Controls the Assembly of the RNA Polymerase II Mediator Complex. Cell Reports, 2012, 2, 1068-1076.	6.4	44
21	Translational Control of Cell Division by Elongator. Cell Reports, 2012, 1, 424-433.	6.4	112
22	Geneâ€specific requirement of RNA polymerase II CTD phosphorylation. Molecular Microbiology, 2012, 84, 995-1004.	2.5	31
23	A Gene-Specific Requirement of RNA Polymerase II CTD Phosphorylation for Sexual Differentiation in S. pombe. Current Biology, 2010, 20, 1053-1064.	3.9	67
24	Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in <i>Schizosaccharomyces pombe</i> . Genome Research, 2010, 20, 1250-1261.	5.5	28
25	The conserved Wobble uridine tRNA thiolase Ctu1–Ctu2 is required to maintain genome integrity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5459-5464.	7.1	129
26	Cdc18/CDC6 activates the Rad3-dependent checkpoint in the fission yeast. Nucleic Acids Research, 2007, 35, 5323-5337.	14.5	25
27	Recruitment of P-TEFb (Cdk9-Pch1) to chromatin by the cap-methyl transferase Pcm1 in fission yeast. EMBO Journal, 2007, 26, 1552-1559.	7.8	58
28	Mcs2 and a novel CAK subunit Pmh1 associate with Skp1 in fission yeast. Biochemical and Biophysical Research Communications, 2004, 325, 1424-1432.	2.1	24
29	Fission yeast Csk1 is a CAK-activating kinase (CAKAK). EMBO Journal, 1998, 17, 7230-7238.	7.8	51