Cecilia M Borghese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2887676/publications.pdf Version: 2024-02-01

		331642	377849
37	1,144	21	34
papers	citations	h-index	g-index
37	37	37	1006
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The δ Subunit of γ-Aminobutyric Acid Type A Receptors Does Not Confer Sensitivity to Low Concentrations of Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1360-1368.	2.5	158
2	Inhaled drugs of abuse enhance serotonin-3 receptor function. Drug and Alcohol Dependence, 2003, 70, 11-15.	3.2	76
3	Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science, 2017, 357, 1261-1266.	12.6	65
4	Studies of ethanol actions on recombinant δ-containing γ-aminobutyric acid type A receptors yield contradictory results. Alcohol, 2007, 41, 155-162.	1.7	62
5	Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 145-154.	2.5	62
6	An Isoflurane- and Alcohol-Insensitive Mutant GABAA Receptor α1 Subunit with Near-Normal Apparent Affinity for GABA: Characterization in Heterologous Systems and Production of Knockin Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 208-218.	2.5	58
7	Sites of Excitatory and Inhibitory Actions of Alcohols on Neuronal Â2Â4 Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 42-52.	2.5	53
8	β3-Containing Gamma-Aminobutyric AcidA Receptors Are Not Major Targets for the Amnesic and Immobilizing Actions of Isoflurane. Anesthesia and Analgesia, 2005, 101, 412-418.	2.2	50
9	GABAA Receptors Containing 🖥 Subunits Contribute to In Vivo Effects of Ethanol in Mice. PLoS ONE, 2014, 9, e85525.	2.5	50
10	Sites of Excitatory and Inhibitory Actions of Alcohols on Neuronal α2β4 Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 42-52.	2.5	46
11	Knockin Mice with Ethanol-Insensitive α1-Containing γ-Aminobutyric Acid Type A Receptors Display Selective Alterations in Behavioral Responses to Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 219-227.	2.5	44
12	A Transmembrane Site Determines Sensitivity of Neuronal Nicotinic Acetylcholine Receptors to General Anesthetics. Journal of Biological Chemistry, 2000, 275, 40879-40886.	3.4	41
13	Inhaled Anesthetic Responses of Recombinant Receptors and Knockin Mice Harboring α2(S270H/L277A) GABA _A Receptor Subunits That Are Resistant to Isoflurane. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 134-144.	2.5	35
14	Mutation of the inhibitory ethanol site in GABA A 🖥 receptors promotes tolerance to ethanol-induced motor incoordination. Neuropharmacology, 2017, 123, 201-209.	4.1	34
15	Effects of Acamprosate on Neuronal Receptors and Ion Channels Expressed in <i>Xenopus</i> Oocytes. Alcoholism: Clinical and Experimental Research, 2008, 32, 188-196.	2.4	30
16	The learning capacity of high or low performance rats is related to the hippocampus NMDA receptors. Brain Research, 1992, 576, 162-164.	2.2	25
17	A Transmembrane Amino Acid in the GABA _A Receptor β ₂ Subunit Critical for the Actions of Alcohols and Anesthetics. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 600-606.	2.5	25
18	Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 304-316.	2.5	24

CECILIA M BORGHESE

#	Article	IF	CITATIONS
19	Phosphatidylserine increases hippocampal synaptic efficacy. Brain Research Bulletin, 1993, 31, 697-700.	3.0	23
20	Lack of tolerance to the anxiolytic effect of diazepam and pentobarbital following chronic administration in perinatally undernourished rats. Brain Research Bulletin, 1998, 46, 237-244.	3.0	23
21	GABA _A receptor transmembrane amino acids are critical for alcohol action: disulfide crossâ€linking and alkyl methanethiosulfonate labeling reveal relative location of binding sites. Journal of Neurochemistry, 2014, 128, 363-375.	3.9	22
22	Acetylcholine and Alcohol Sensitivity of Neuronal Nicotinic Acetylcholine Receptors: Mutations in Transmembrane Domains. Alcoholism: Clinical and Experimental Research, 2002, 26, 1764-1772.	2.4	21
23	Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channels. Molecular Pharmacology, 2013, 84, 670-678.	2.3	19
24	Does Acetaldehyde Mediate Ethanol Action in the Central Nervous System?. Alcoholism: Clinical and Experimental Research, 2001, 25, 1570-1575.	2.4	18
25	Identification of an Inhibitory Alcohol Binding Site in GABA _A 🖥 Receptors. ACS Chemical Neuroscience, 2016, 7, 100-108.	3.5	12
26	Acetylcholine and alcohol sensitivity of neuronal nicotinic acetylcholine receptors: mutations in transmembrane domains. Alcoholism: Clinical and Experimental Research, 2002, 26, 1764-72.	2.4	12
27	Mutation in neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes blocks ethanol action. Addiction Biology, 2003, 8, 313-318.	2.6	10
28	Reduced Tolerance to Certain Pharmacological Effects of Ethanol After Chronic Administration in Perinatally Undernourished Rats. Pharmacology Biochemistry and Behavior, 1997, 57, 659-663.	2.9	9
29	Mutations M287L and Q266I in the Glycine Receptor α1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice. Anesthesiology, 2012, 117, 765-771.	2.5	9
30	Novel Molecule Exhibiting Selective Affinity for GABAA Receptor Subtypes. Scientific Reports, 2017, 7, 6230.	3.3	8
31	The Molecular Pharmacology of Volatile Anesthetics. International Anesthesiology Clinics, 2015, 53, 28-39.	0.8	6
32	Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology, 2020, 178, 108220.	4.1	5
33	Modulation of α1β3γ2 GABA _A receptors expressed in <i>X. laevis</i> oocytes using a propofol photoswitch tethered to the transmembrane helix. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
34	Anesthetic-Induced Immobility: Neuronal Nicotinic Acetylcholine Receptors Are No Longer in the Picture. Anesthesia and Analgesia, 2002, 95, 509-511.	2.2	3
35	(+)-Catharanthine potentiates the GABAA receptor by binding to a transmembrane site at the β(+)/α(-) interface near the TM2-TM3 loop. Biochemical Pharmacology, 2022, 199, 114993.	4.4	2
36	THE ROLE OF N265 OF THE GABAA RECEPTOR Î ² 2 SUBUNIT IN THE ACTIONS OF ALCOHOLS AND ANESTHETICS. Alcoholism: Clinical and Experimental Research, 2008, 32, 370A-370A.	2.4	0

#	ARTICLE	IF	CITATIONS
37	A Single Mutation in GLIC Reveals Both the Potentiating and the Inhibitory Nature of Propofol. Biophysical Journal, 2016, 110, 456a.	0.5	0