Anastasios Anastasiadis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2887460/publications.pdf Version: 2024-02-01

		393982	395343
43	1,414	19	33
papers	citations	h-index	g-index
45	45	45	809
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evidence of soil-structure interaction from modular full-scale field experimental tests. Bulletin of Earthquake Engineering, 2022, 20, 3167-3194.	2.3	8
2	Foundation impedance functions from full-scale soil-structure interaction tests. Soil Dynamics and Earthquake Engineering, 2021, 141, 106523.	1.9	18
3	Largeâ€scale field testing of geotechnical seismic isolation of structures using gravelâ€rubber mixtures. Earthquake Engineering and Structural Dynamics, 2021, 50, 2712-2731.	2.5	42
4	A numerical investigation on the seismic isolation potential of rubber/soil mixtures. Earthquake Engineering and Engineering Vibration, 2020, 19, 683-704.	1.1	23
5	Investigation on site-specific seismic response analysis for Bucharest (Romania). Bulletin of Earthquake Engineering, 2020, 18, 1933-1953.	2.3	12
6	Towards the revision of EC8: Proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors. Soil Dynamics and Earthquake Engineering, 2019, 126, 105137.	1.9	56
7	Dynamic Behaviour of Granular Soil Materials Mixed with Granulated Rubber: Effect of Rubber Content and Granularity on the Small-Strain Shear Modulus and Damping Ratio. Geotechnical and Geological Engineering, 2018, 36, 1267.	0.8	12
8	Dynamic behaviour of granular soil materials mixed with granulated rubber: influence of rubber content and mean grain size ratio on shear modulus and damping ratio for a wide strain range. Innovative Infrastructure Solutions, 2018, 3, 1.	1.1	10
9	Field evidence of SSI from full-scale structure testing. Soil Dynamics and Earthquake Engineering, 2018, 112, 89-106.	1.9	26
10	Small-strain stiffness and damping of Lanzhou loess. Soil Dynamics and Earthquake Engineering, 2017, 95, 96-105.	1.9	27
11	SMALL-STRAIN STIFFNESS AND DAMPING OF LOESS IN CHINA. , 2017, , .		0
12	Wave Propagation Attenuation and Threshold Strains of Fully Saturated Soils with Intraparticle Voids. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	19
13	Effects of state of test sample, specimen geometry and sample preparation on dynamic properties of rubber–sand mixtures. Geosynthetics International, 2015, 22, 301-310.	1.5	44
14	Elastic Stiffness of Volcanic Sand through Resonant Column Tests. Applied Mechanics and Materials, 2015, 775, 292-297.	0.2	0
15	A comparison of material damping measurements in resonant column using the steady-state and free-vibration decay methods. Soil Dynamics and Earthquake Engineering, 2015, 74, 10-13.	1.9	35
16	New Design Spectra in Eurocode 8 and Preliminary Application to the Seismic Risk of Thessaloniki, Greece. Geotechnical, Geological and Earthquake Engineering, 2015, , 45-91.	0.1	5
17	Site Classification and Spectral Amplification for Seismic Code Provisions. Geotechnical, Geological and Earthquake Engineering, 2014, , 23-72.	0.1	3
18	FULL-SCALE TESTING OF A MODEL STRUCTURE IN EUROSEISTEST TO STUDY SOIL-FOUNDATION-STRUCTURE INTERACTION. , 2014, , .		1

2

#	Article	IF	CITATIONS
19	New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 2013, 11, 925-966.	2.3	139
20	Normalized shear modulus reduction and damping ratio curves of quartz sand and rhyolitic crushed rock. Soils and Foundations, 2013, 53, 879-893.	1.3	82
21	The dynamics of a pumice granular soil in dry state under isotropic resonant column testing. Soil Dynamics and Earthquake Engineering, 2013, 45, 70-79.	1.9	44
22	The EUROSEISTEST Strong-Motion Database and Web Portal. Seismological Research Letters, 2013, 84, 796-804.	0.8	21
23	Design spectra and amplification factors for Eurocode 8. Bulletin of Earthquake Engineering, 2012, 10, 1377-1400.	2.3	59
24	Small-Strain Shear Modulus and Damping Ratio of Sand-Rubber and Gravel-Rubber Mixtures. Geotechnical and Geological Engineering, 2012, 30, 363-382.	0.8	141
25	Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes. Soil Dynamics and Earthquake Engineering, 2012, 33, 38-53.	1.9	197
26	The Small-Strain Shear Modulus and Damping Ratio of Quartz and Volcanic Sands. Geotechnical Testing Journal, 2012, 35, 20120073.	0.5	96
27	Dynamic Behavior of Sand/Rubber Mixtures. Part I: Effect of Rubber Content and Duration of Confinement on Small-Strain Shear Modulus and Damping Ratio. Journal of ASTM International, 2012, 9, 1-19.	0.2	51
28	Dynamic Behavior of Sand/Rubber Mixtures, Part II: Effect of Rubber Content on G/GO-Î ³ -DT Curves and Volumetric Threshold Strain. Journal of ASTM International, 2012, 9, 1-12.	0.2	47
29	Dynamic Behavior of Sand/Rubber Mixtures. Part I: Effect of Rubber Content and Duration of Confinement on Small-Strain Shear Modulus and Damping Ratio. , 2012, , 221-247.		3
30	Dynamic Behavior of Sand/Rubber Mixtures. Part I: Effect of Rubber Content and Duration of Confinement on Small-Strain Shear Modulus and Damping Ratio. , 2012, , 221-247.		0
31	Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects. Earthquake and Structures, 2011, 2, 207-232.	1.0	17
32	Elastic Demand Spectra. Geotechnical, Geological and Earthquake Engineering, 2010, , 89-99.	0.1	7
33	SEISMIC RISK SCENARIOS FOR AN EFFICIENT SEISMIC RISK MANAGEMENT: THE CASE OF THESSALONIKI (GREECE). , 2006, , 229-244.		8
34	Complex Site Effects in Thessaloniki (Greece): I. Soil Structure and Comparison of Observations with 1D Analysis. Bulletin of Earthquake Engineering, 2004, 2, 271-290.	2.3	21
35	Complex Site Effects in Thessaloniki (Greece): II. 2D SH Modelling and Engineering Insights. Bulletin of Earthquake Engineering, 2004, 2, 301-327.	2.3	29
36	PART I: Theoretical Site Response Estimation for Microzoning Purposes. Pure and Applied Geophysics, 2004, 161, 1185-1203.	0.8	10

#	Article	IF	CITATIONS
37	PART II: Comparison of Theoretical and Experimental Estimations of Site Effects. Pure and Applied Geophysics, 2004, 161, 1205-1219.	0.8	8
38	PART I: Theoretical Site Response Estimation for Microzoning Purposes. , 2004, , 1185-1203.		1
39	PART II: Comparison of Theoretical and Experimental Estimations of Site Effects. , 2004, , 1205-1219.		4
40	Thessaloniki's Detailed Microzoning: Subsurface Structure as Basis for Site Response Analysis. , 2001, 158, 2597-2633.		58
41	Sediment non-linearity and attenuation of seismic waves: a study of accelerograms from Lefkas, western Greece. Soil Dynamics and Earthquake Engineering, 2001, 21, 63-73.	1.9	17
42	Effective Lyapunov Numbers and Correlation Dimensions in a 3-D Hamiltonian System. International Astronomical Union Colloquium, 1999, 172, 447-448.	0.1	0
43	Material Damping of Crushed Rock in Free-Decay Mode. Applied Mechanics and Materials, 0, 775, 283-286.	0.2	1