
RafaÅ, Chodun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2887442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The sputtering of titanium magnetron target with increased temperature in reactive atmosphere by gas injection magnetron sputtering technique. Applied Surface Science, 2022, 574, 151597.	6.1	15
2	Application of the plasma surface sintering conditions in the synthesis of ReBx–Ti targets employed for hard films deposition in magnetron sputtering technique. International Journal of Refractory Metals and Hard Materials, 2022, 103, 105756.	3.8	4
3	Design of thin DLC/TiO2 film interference coatings on glass screen protector using a neon–argon-based gas injection magnetron sputtering technique. Diamond and Related Materials, 2022, 123, 108859.	3.9	4
4	Synthesis of Copper Nitride Layers by the Pulsed Magnetron Sputtering Method Carried out under Various Operating Conditions. Materials, 2021, 14, 2694.	2.9	11
5	TiO2 coating fabrication using gas injection magnetron sputtering technique by independently controlling the gas and power pulses. Thin Solid Films, 2021, 728, 138695.	1.8	8
6	The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 5066-5078.	2.2	2
7	Influence of generation control of the magnetron plasma on structure and properties of copper nitride layers. Thin Solid Films, 2020, 694, 137731.	1.8	12
8	TiO2 - based decorative interference coatings produced at industrial conditions. Thin Solid Films, 2020, 711, 138294.	1.8	7
9	Design of pulsed neon injection in the synthesis of W-B-C films using magnetron sputtering from a surface-sintered single powder cathode. Thin Solid Films, 2020, 716, 138426.	1.8	14
10	Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputtering. Materials and Design, 2020, 191, 108634.	7.0	7
11	The state of coating–substrate interfacial region formed during TiO2 coating deposition by Gas Injection Magnetron Sputtering technique. Surface and Coatings Technology, 2020, 398, 126092.	4.8	18
12	Chemical and structural characterization of tungsten nitride (WNx) thin films synthesized via Gas Injection Magnetron Sputtering technique. Vacuum, 2019, 165, 266-273.	3.5	28
13	Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering technique. Diamond and Related Materials, 2019, 96, 1-10.	3.9	15
14	Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique. Applied Surface Science, 2019, 466, 12-18.	6.1	27
15	Influence of annealing on electronic properties of thin AlN films deposited by magnetron sputtering method on silicon substrates. , 2019, , .		0
16	Characterization of sp 3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 136-140.	3.9	14
17	Phase composition of copper nitride coatings examined by the use of X-ray diffraction and Raman spectroscopy. Journal of Molecular Structure, 2018, 1165, 79-83.	3.6	22
18	Copper nitride layers synthesized by pulsed magnetron sputtering. Thin Solid Films, 2018, 645, 32-37.	1.8	23

RafaÅ, Chodun

#	Article	IF	CITATIONS
19	Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin films. Applied Surface Science, 2018, 456, 789-796.	6.1	19
20	Characteristic STATE of substrate and coatings interface formed by Impulse Plasma Deposition method. Thin Solid Films, 2018, 663, 25-30.	1.8	3
21	Influence of modulation frequency on the synthesis of thin films in pulsed magnetron sputtering processes. Materials Science-Poland, 2018, 36, 697-703.	1.0	7
22	Structure of Cu–N layers synthesized by pulsed magnetron sputtering with variable frequency of plasma generation. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 167-170.	1.4	8
23	Reactive sputtering of titanium compounds using the magnetron system with a grounded cathode. Thin Solid Films, 2017, 640, 73-80.	1.8	6
24	Multi-sided metallization of textile fibres by using magnetron system with grounded cathode. Materials Science-Poland, 2017, 35, 639-646.	1.0	5
25	Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion. International Journal of Nanomedicine, 2017, Volume 12, 7241-7254.	6.7	33
26	Titanium nitride coatings synthesized by IPD method with eliminated current oscillations. Materials Science-Poland, 2016, 34, 523-528.	1.0	2
27	Novel GIMS technique for deposition of colored Ti/TiOâ,, coatings on industrial scale. Materials Science-Poland, 2016, 34, 137-141.	1.0	16
28	The application of magnetic self-filter to optimization of AIN film growth process during the impulse plasma deposition synthesis. Materials Science-Poland, 2016, 34, 126-131.	1.0	1
29	The role of magnetic energy on plasma localization during the glow discharge under reduced pressure. Nukleonika, 2016, 61, 191-194.	0.8	4
30	OES studies of plasmoids distribution during the coating deposition with the use of the Impulse Plasma Deposition method controlled by the gas injection. Vacuum, 2016, 128, 259-264.	3.5	7
31	Structure of AlN films deposited by magnetron sputtering method. Materials Science-Poland, 2015, 33, 639-643.	1.0	1
32	Synthesis of multicomponent metallic layers during impulse plasma deposition. Materials Science-Poland, 2015, 33, 841-846.	1.0	5
33	Peculiar Role of the Metallic States on the Nanoâ€ <scp>M</scp> o <scp>S</scp> ₂ Ceramic Particle Surface in Antimicrobial and Antifungal Activity. International Journal of Applied Ceramic Technology, 2015, 12, 885-890.	2.1	18
34	Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition. Materials Science-Poland, 2015, 33, 894-901.	1.0	6
35	Characterization of microstructural, mechanical and optical properties of TiO2 layers deposited by GIMS and PMS methods. Surface and Coatings Technology, 2015, 282, 16-23.	4.8	44
36	On coating adhesion during impulse plasma deposition. Physica Scripta, 2014, T161, 014063.	2.5	7

RafaÅ, Chodun

#	Article	IF	CITATIONS
37	Computational modelling of discharges within the impulse plasma deposition accelerator with a gas valve. Physica Scripta, 2014, T161, 014049.	2.5	6
38	Electric field used as the substitute for ultrasounds in the liquid exfoliation of hexagonal boron nitride. Microelectronic Engineering, 2014, 126, 124-128.	2.4	17
39	Impulse Plasma In Surface Engineering - a review. Journal of Physics: Conference Series, 2014, 564, 012007.	0.4	10
40	Optimization of gas injection conditions during deposition of AlN layers by novel reactive GIMS method. Materials Science-Poland, 2014, 32, 171-175.	1.0	14
41	Zastosowanie metody IPD do syntezy warstw c-AIN. Elektronika, 2014, 1, 15-17.	0.0	0
42	Gas injection as a tool for plasma process control during coating deposition. Surface and Coatings Technology, 2013, 228, S367-S373.	4.8	31
43	Dependence of the specific features of two PAPVD methods: Impulse Plasma Deposition (IPD) and Pulsed Magnetron Sputtering (PMS) on the structure of Fe–Cu alloy layers. Applied Surface Science, 2013, 275, 14-18.	6.1	23
44	Morphology of the TiN coatings obtained by the IPD method with two frequencies of impulse plasma generation. Surface and Coatings Technology, 2010, 205, S28-S31.	4.8	3
45	Properties of TiN coatings deposited by the modified IPD method. Vacuum, 2010, 85, 514-517.	3.5	18