Luis Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886906/publications.pdf

Version: 2024-02-01

430754 610775 1,561 25 18 24 h-index citations g-index papers 28 28 28 1598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science, 2021, 371, .	6.0	84
2	Multifocal imaging for precise, label-free tracking of fast biological processes in 3D. Nature Communications, 2021, 12, 4574.	5.8	9
3	Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm. European Physical Journal E, 2021, 44, 87.	0.7	23
4	The steering gaits of sperm. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190149.	1.8	24
5	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	0.7	242
6	Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO Journal, 2020, 39, e102723.	3 . 5	22
7	Kinetic and photonic techniques to study chemotactic signaling in sea urchin sperm. Methods in Cell Biology, 2019, 151, 487-517.	0.5	15
8	A novel crossâ€species inhibitor to study the function of CatSper Ca ²⁺ channels in sperm. British Journal of Pharmacology, 2018, 175, 3144-3161.	2.7	60
9	The tailored sperm cell. Journal of Plant Research, 2017, 130, 455-464.	1.2	17
10	Human sperm steer with second harmonics of the flagellar beat. Nature Communications, 2017, 8, 1415.	5.8	79
11	Sperm as microswimmers – navigation and sensing at the physical limit. European Physical Journal: Special Topics, 2016, 225, 2119-2139.	1.2	28
12	Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Molecular and Cellular Endocrinology, 2016, 427, 143-154.	1.6	28
13	A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm. ELife, 2015, 4, .	2.8	42
14	At the physical limit â€" chemosensation in sperm. Current Opinion in Neurobiology, 2015, 34, 110-116.	2.0	28
15	The <scp>C</scp> at <scp>S</scp> per channel controls chemosensation in sea urchin sperm. EMBO Journal, 2015, 34, 379-392.	3.5	93
16	Sperm navigation along helical paths in 3D chemoattractant landscapes. Nature Communications, 2015, 6, 7985.	5.8	157
17	Controlling fertilization and cAMP signaling in sperm by optogenetics. ELife, 2015, 4, .	2.8	99
18	Direct action of endocrine disrupting chemicals on human sperm. EMBO Reports, 2014, 15, 758-765.	2.0	137

#	Article	IF	CITATION
19	The computational sperm cell. Trends in Cell Biology, 2014, 24, 198-207.	3.6	106
20	Sperm from Sneaker Male Squids Exhibit Chemotactic Swarming to CO2. Current Biology, 2013, 23, 775-781.	1.8	50
21	CRIS—A Novel cAMP-Binding Protein Controlling Spermiogenesis and the Development of Flagellar Bending. PLoS Genetics, 2013, 9, e1003960.	1.5	45
22	Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. Journal of Cell Biology, 2012, 198, 1075-1091.	2.3	37
23	The rate of change in Ca2+ concentration controls sperm chemotaxis. Journal of Cell Biology, 2012, 196, 653-663.	2.3	88
24	The rate of change in Ca ²⁺ concentration controls sperm chemotaxis. Journal of General Physiology, 2012, 139, i2-i2.	0.9	0
25	Caged Progesterone: A New Tool for Studying Rapid Nongenomic Actions of Progesterone. Journal of the American Chemical Society, 2009, 131, 4027-4030.	6.6	43