
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886865/publications.pdf Version: 2024-02-01

FDANK FREI

#	Article	IF	CITATIONS
1	The Evolution of the Satratoxin and Atranone Gene Clusters of Stachybotrys chartarum. Journal of Fungi (Basel, Switzerland), 2022, 8, 340.	1.5	1
2	Occurrence of type A, B and D trichothecenes, zearalenone and stachybotrylactam in straw. Archives of Animal Nutrition, 2021, 75, 105-120.	0.9	7
3	The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil. Scientific Reports, 2021, 11, 5317.	1.6	11
4	Development of a Simple and Robust Whole Blood Assay with Dual Co-Stimulation to Quantify the Release of T-Cellular Signature Cytokines in Response to Aspergillus fumigatus Antigens. Journal of Fungi (Basel, Switzerland), 2021, 7, 462.	1.5	9
5	Galactofuranose (Galf)-containing sugar chain contributes to the hyphal growth, conidiation and virulence of F. oxysporum f.sp. cucumerinum. PLoS ONE, 2021, 16, e0250064.	1.1	4
6	Chronic Occupational Mold Exposure Drives Expansion of Aspergillus-Reactive Type 1 and Type 2 T-Helper Cell Responses. Journal of Fungi (Basel, Switzerland), 2021, 7, 698.	1.5	6
7	Ypd1 Is an Essential Protein of the Major Fungal Pathogen Aspergillus fumigatus and a Key Element in the Phosphorelay That Is Targeted by the Antifungal Drug Fludioxonil. Frontiers in Fungal Biology, 2021, 2, .	0.9	3
8	Functional comparison of the group III hybrid histidine kinases TcsC of Aspergillus fumigatus and NikA of Aspergillus nidulans. Medical Mycology, 2020, 58, 362-371.	0.3	5
9	Monoclonal Antibodies as Tools to Combat Fungal Infections. Journal of Fungi (Basel, Switzerland), 2020, 6, 22.	1.5	24
10	Monoclonal Antibody AP3 Binds Galactomannan Antigens Displayed by the Pathogens Aspergillus flavus, A. fumigatus, and A. parasiticus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 234.	1.8	17
11	Tape mount immunostaining: a versatile method for immunofluorescence analysis of fungi. Future Microbiology, 2019, 14, 275-282.	1.0	3
12	Size matters – how the immune system deals with fungal hyphae. Microbes and Infection, 2018, 20, 521-525.	1.0	4
13	Fungal infections in animals: a patchwork of different situations. Medical Mycology, 2018, 56, S165-S187.	0.3	141
14	Validation of a simplified in vitro Transwell® model of the alveolar surface to assess host immunity induced by different morphotypes of Aspergillus fumigatus. International Journal of Medical Microbiology, 2018, 308, 1009-1017.	1.5	10
15	Antifungal Use in Veterinary Practice and Emergence of Resistance. , 2018, , 359-402.		6
16	Lah is a transmembrane protein and requires Spa10 for stable positioning of Woronin bodies at the septal pore of Aspergillus fumigatus. Scientific Reports, 2017, 7, 44179.	1.6	10
17	Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. International Journal of Medical Microbiology, 2017, 307, 200-208.	1.5	7
18	Immunoproteomics of <i>Aspergillus</i> for the development of biomarkers and immunotherapies. Proteomics - Clinical Applications, 2016, 10, 910-921.	0.8	22

#	Article	IF	CITATIONS
19	Functional characterization of the Woronin body protein WscA of the pathogenic mold Aspergillus fumigatus. International Journal of Medical Microbiology, 2016, 306, 165-173.	1.5	8
20	Agents that activate the High Osmolarity Glycerol pathway as a means to combat pathogenic molds. International Journal of Medical Microbiology, 2016, 306, 642-651.	1.5	11
21	Back cover: Immunoproteomics of Aspergillus for the development of biomarkers and immunotherapies. Proteomics - Clinical Applications, 2016, 10, NA-NA.	0.8	0
22	Distinct galactofuranose antigens in the cell wall and culture supernatants as a means to differentiate Fusarium from Aspergillus species. International Journal of Medical Microbiology, 2016, 306, 381-390.	1.5	9
23	Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight, 2016, 1, e89890.	2.3	141
24	<scp><i>A</i></scp> <i>spergillus fumigatus</i> devoid of cell wall βâ€1,3â€glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Molecular Microbiology, 2015, 95, 458-471.	1.2	90
25	Hypoxia-inducible factor 1α modulates metabolic activity and cytokine release in anti- Aspergillus fumigatus immune responses initiated by human dendritic cells. International Journal of Medical Microbiology, 2015, 305, 865-873.	1.5	32
26	Characterization of the Aspergillus fumigatus chitosanase CsnB and evaluation of its potential use in serological diagnostics. International Journal of Medical Microbiology, 2014, 304, 696-702.	1.5	17
27	<scp>W</scp> oronin bodies, their impact on stress resistance and virulence of the pathogenic mould <i><scp>A</scp>spergillus fumigatus</i> and their anchoring at the septal pore of filamentous <i><scp>A</scp>scomycota</i> . Molecular Microbiology, 2013, 89, 857-871.	1.2	33
28	Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. International Journal of Medical Microbiology, 2013, 303, 90-97.	1.5	36
29	The Two-Component Sensor Kinase TcsC and Its Role in Stress Resistance of the Human-Pathogenic Mold Aspergillus fumigatus. PLoS ONE, 2012, 7, e38262.	1.1	46
30	Studies on galactofuranose-containing glycostructures of the pathogenic mold Aspergillus fumigatus. International Journal of Medical Microbiology, 2011, 301, 523-530.	1.5	30
31	Gut proteases target Yersinia invasin in vivo. BMC Research Notes, 2011, 4, 129.	0.6	5
32	Human NK Cells Display Important Antifungal Activity against <i>Aspergillus fumigatus</i> , Which Is Directly Mediated by IFN-γ Release. Journal of Immunology, 2011, 187, 1369-1376.	0.4	111
33	NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes and Infection, 2010, 12, 928-936.	1.0	231
34	Farnesol misplaces tipâ€localized Rho proteins and inhibits cell wall integrity signalling in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2010, 76, 1191-1204.	1.2	76
35	Aspergillus fumigatus: contours of an opportunistic human pathogen. Cellular Microbiology, 2010, 12, 1535-1543.	1.1	157
36	AfMkk2 is required for cell wall integrity signaling, adhesion, and full virulence of the human pathogen Aspergillus fumigatus. International Journal of Medical Microbiology, 2010, 300, 496-502.	1.5	45

#	Article	IF	CITATIONS
37	The mitA gene of Aspergillus fumigatus is required for mannosylation of inositol-phosphorylceramide, but is dispensable for pathogenicity. Fungal Genetics and Biology, 2010, 47, 169-178.	0.9	24
38	Approaching the Secrets of N-Glycosylation in Aspergillus fumigatus: Characterization of the AfOch1 Protein. PLoS ONE, 2010, 5, e15729.	1.1	39
39	Interferon-γ (IFN-γ) Mediates a Direct Fungicidal Effect of Human Natural Killer (NK) Cells Against Aspergillus Fumigatus. Blood, 2010, 116, 2779-2779.	0.6	5
40	Immune Responses of Human Immature Dendritic Cells Can Be Modulated by the Recombinant <i>Aspergillus fumigatus</i> Antigen Aspf1. Vaccine Journal, 2009, 16, 1485-1492.	3.2	15
41	Characterisation of the CipC-like protein AFUA_5C09330 of the opportunistic human pathogenic mouldAspergillus fumigatus. Mycoses, 2009, 53, 296-304.	1.8	17
42	Characterisation of the phagocytic uptake of Aspergillus fumigatus conidia by macrophages. Microbes and Infection, 2008, 10, 175-184.	1.0	33
43	Toll-Like Receptors and Fungal Recognition. , 2008, , 243-261.		0
44	The Putative α-1,2-Mannosyltransferase AfMnt1 of the Opportunistic Fungal Pathogen <i>Aspergillus fumigatus</i> Is Required for Cell Wall Stability and Full Virulence. Eukaryotic Cell, 2008, 7, 1661-1673.	3.4	101
45	Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cellular Microbiology, 2007, 9, 368-381.	1.1	284
46	Role of Respiration in the Germination Process of the Pathogenic Mold Aspergillus fumigatus. Current Microbiology, 2007, 54, 354-360.	1.0	47
47	Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genetics and Biology, 2006, 43, 476-489.	0.9	68
48	Quantification of phagocytosis of Aspergillus conidia by macrophages using a novel antibody-independent assay. Journal of Microbiological Methods, 2006, 66, 170-173.	0.7	14
49	Toll-like receptors: Recent advances, open questions and implications for aspergillosis control. Medical Mycology, 2006, 44, 219-227.	0.3	25
50	Asp f6, an Aspergillus allergen specifically recognized by IgE from patients with allergic bronchopulmonary aspergillosis, is differentially expressed during germination. Allergy: European Journal of Allergy and Clinical Immunology, 2005, 60, 1430-1435.	2.7	37
51	Analysis of the major proteins secreted by the human opportunistic pathogenAspergillus fumigatusunderin vitroconditions. Medical Mycology, 2005, 43, 623-630.	0.3	46
52	Antagonistic antibody prevents toll-like receptor 2–driven lethal shock-like syndromes. Journal of Clinical Investigation, 2004, 113, 1473-1481.	3.9	181
53	Generation of Monoclonal Antibodies Against Secreted Proteins of STEC. , 2003, 73, 125-136.		5

#	Article	IF	CITATIONS
55	Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cellular Microbiology, 2003, 5, 561-570.	1.1	285
56	Lactoferrin Impairs Type III Secretory System Function in Enteropathogenic Escherichia coli. Infection and Immunity, 2003, 71, 5149-5155.	1.0	100
57	Functional modulation of pathogenic bacteria upon contact with host target cells. , 2002, , 203-220.		1
58	C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Molecular Microbiology, 2002, 44, 335-349.	1.2	322
59	Detection of early phase specific surface appendages during germination ofAspergillus fumigatusconidia. FEMS Microbiology Letters, 2002, 206, 99-105.	0.7	32
60	Detection of early phase specific surface appendages during germination of Aspergillus fumigatus conidia. FEMS Microbiology Letters, 2002, 206, 99-105.	0.7	1
61	Modulation of host cell signalling by enteropathogenic and Shiga toxin-producing Escherichia coli. International Journal of Medical Microbiology, 2001, 291, 277-285.	1.5	7
62	Intimin from Shiga toxin-producing Escherichia coli and its isolated C-terminal domain exhibit different binding properties for Tir and a eukaryotic surface receptor. International Journal of Medical Microbiology, 2001, 290, 683-691.	1.5	15
63	EspA filament-mediated protein translocation into red blood cells. Cellular Microbiology, 2001, 3, 213-222.	1.1	97
64	Structure and composition of the Shigella flexneri 'needle complex', a part of its type III secreton. Molecular Microbiology, 2001, 39, 652-663.	1.2	315
65	Coiled-Coil Domain of Enteropathogenic Escherichia coli Type III Secreted Protein EspD Is Involved in EspA Filament-Mediated Cell Attachment and Hemolysis. Infection and Immunity, 2001, 69, 4055-4064.	1.0	69
66	Multiple Interactions between Pullulanase Secreton Components Involved in Stabilization and Cytoplasmic Membrane Association of PulE. Journal of Bacteriology, 2000, 182, 2142-2152.	1.0	123
67	Characterization of SepL of EnterohemorrhagicEscherichia coli. Journal of Bacteriology, 2000, 182, 6490-6498.	1.0	58
68	The actin-based motility of intracellularListeria monocytogenesis not controlled by small GTP-binding proteins of the Rho- and Ras-subfamilies. FEMS Microbiology Letters, 1999, 176, 117-124.	0.7	11
69	The actin-based motility of intracellular Listeria monocytogenes is not controlled by small GTP-binding proteins of the Rho- and Ras-subfamilies. FEMS Microbiology Letters, 1999, 176, 117-124.	0.7	2
70	Small GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacingEscherichia coli. FEMS Microbiology Letters, 1998, 163, 107-112.	0.7	19
71	EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosineâ€phosphorylated 90 kDa protein. Molecular Microbiology, 1998, 28, 463-474.	1.2	180
72	Initial binding of Shiga toxin-producingEscherichia colito host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Molecular Microbiology, 1998, 30, 147-161.	1.2	158

#	Article	IF	CITATIONS
73	Small GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacing Escherichia coli. FEMS Microbiology Letters, 1998, 163, 107-112.	0.7	2
74	Pas, a Novel Protein Required for Protein Secretion and Attaching and Effacing Activities of Enterohemorrhagic <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 4370-4379.	1.0	39
75	A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO Journal, 1997, 16, 5433-5444.	3.5	372
76	Characterization of an exported protease from Shiga toxinâ€producing Escherichia coli. Molecular Microbiology, 1997, 25, 771-784.	1.2	95
77	The enterohemolysin phenotype of bovine Shiga-like toxin-producing Escherichia coli (SLTEC) is encoded by the EHEC-hemolysin gene. Veterinary Microbiology, 1996, 52, 153-164.	0.8	33
78	Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli. Infection and Immunity, 1996, 64, 4472-4479.	1.0	89
79	A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells EMBO Journal, 1995, 14, 1314-1321.	3.5	246
80	Naturally occurring virulence-attenuated isolates ofListeria monocytogenescapable of inducing long term protection against infection by virulent strains of homologous and heterologous serotypes. FEMS Immunology and Medical Microbiology, 1994, 10, 1-9.	2.7	45
81	Identification of the Mouse Helper T Lymphocyte Differentiation Antigen 3G11 as the Ganglioside IV3(NeuAc)2-GgOse4Cer. Biochemical and Biophysical Research Communications, 1994, 200, 1557-1563.	1.0	9
82	Gangliosides: differentiation markers for murine T helper lymphocyte subpopulations TH1 and TH2. Biochemistry, 1992, 31, 12190-12197.	1.2	41
83	Characterization of Aspergillus terreus Accessory Conidia and Their Interactions With Murine Macrophages. Frontiers in Microbiology, 0, 13, .	1.5	2