Antonella Badia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886522/publications.pdf

Version: 2024-02-01

78 papers 3,943 citations

32 h-index 63 g-index

79 all docs

79 docs citations

79 times ranked 5017 citing authors

#	Article	IF	Citations
1	Adhesion response of filopodia to an AFM lateral detachment force and functional changes after centrifugation of cells grown on nanoporous titanium. Materials Today Bio, 2022, 14, 100250.	5.5	1
2	Metalâ€Supported Phospholipid Bilayers Formed by Redox Command. Advanced Materials Interfaces, 2022, 9, 2101289.	3.7	1
3	Experimental methods in chemical engineering: Atomic force microscopy â^ AFM. Canadian Journal of Chemical Engineering, 2022, 100, 2778-2806.	1.7	O
4	Redox-Induced Lipid Vesicle Fusion Onto Electroactive Self-Assembled Monolayers. ECS Meeting Abstracts, 2022, MA2022-01, 1941-1941.	0.0	0
5	pH responsive platinum-coated single-walled carbon nanotube optical sensor with internal reference. Carbon, 2021, 184, 659-668.	10.3	3
6	Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers. Langmuir, 2021, 37, 12365-12376.	3.5	3
7	An electrochemical immittance analysis of the dielectric properties of self-assembled monolayers. Canadian Journal of Chemistry, 2020, 98, 471-479.	1.1	2
8	Nanoporosity Stimulates Cell Spreading and Focal Adhesion Formation in Cells with Mutated Paxillin. ACS Applied Materials & Date: Accordance (1988) 12, 14924-14932.	8.0	19
9	Molecular Origin of the Odd–Even Effect of Macroscopic Properties of <i>n</i> -Alkanethiolate Self-Assembled Monolayers: Bulk or Interface?. Journal of the American Chemical Society, 2020, 142, 13051-13061.	13.7	35
10	Langmuir–Blodgett fabrication of large-area black phosphorus-C ₆₀ thin films and heterojunction photodetectors. Nanoscale, 2020, 12, 19814-19823.	5.6	17
11	Stereostructural Effects in the Electrochemical Properties of Self-Assembled Monolayers. ECS Meeting Abstracts, 2020, MA2020-01, 2542-2542.	0.0	O
12	Parity Effects in the Physicochemical Properties of Self-Assembled Monolayers. ECS Meeting Abstracts, 2020, MA2020-02, 2880-2880.	0.0	1
13	Selective Isotopic Labeling Resolves the Gel-to-Fluid Phase Transitions of the Individual Leaflets of a Planar-Supported Phospholipid Bilayer. Langmuir, 2019, 35, 9912-9922.	3.5	3
14	The aggregation and micellization of ionic surfactants in aqueous solution detected using surface-confined redox and ion-pairing reactions. Electrochimica Acta, 2019, 326, 134991.	5.2	2
15	A Solvent-Free Approach to Lithium-Ion Battery Electrodes Using Melt-Processable Elastomeric Binders. ECS Meeting Abstracts, 2019, , .	0.0	0
16	(Invited) Dry Process for the Preparation of Porous Composite Electrodes for Battery Application. ECS Meeting Abstracts, 2019, , .	0.0	0
17	Melt-Processing of Electrodes for Lithium-Ion Batteries: A New Solvent-Free Approach. ECS Meeting Abstracts, 2019, , .	0.0	0
18	An Artificial Lithium Protective Layer that Enables the Use of Acetonitrileâ€Based Electrolytes in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 5072-5075.	13.8	97

#	Article	IF	CITATIONS
19	An Artificial Lithium Protective Layer that Enables the Use of Acetonitrileâ€Based Electrolytes in Lithium Metal Batteries. Angewandte Chemie, 2018, 130, 5166-5169.	2.0	15
20	Nanoparticle-induced structural changes in lung surfactant membranes: an X-ray scattering study. Environmental Science: Nano, 2018, 5, 1218-1230.	4.3	21
21	Silica Nanoparticle-Induced Structural Reorganizations in Pulmonary Surfactant Films: What Monolayer Compression Isotherms Do Not Say. ACS Applied Nano Materials, 2018, 1, 5268-5278.	5. O	67
22	Micromechanical Redox Actuation by Self-Assembled Monolayers of Ferrocenylalkanethiolates: Evens Push More Than Odds. Journal of the American Chemical Society, 2018, 140, 10063-10066.	13.7	9
23	Electroactive Self-Assembled Monolayers Detect Micelle Formation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5607-5621.	8.0	10
24	Odd–Even Effects in Electroactive Self-Assembled Monolayers Investigated by Electrochemical Surface Plasmon Resonance and Impedance Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 24626-24640.	3.1	36
25	A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells. Acta Biomaterialia, 2017, 60, 339-349.	8.3	108
26	Polydopamine as an Efficient Polymer to Prepare Biologically Relevant Supported Lipid Bilayers. Biophysical Journal, 2015, 108, 542a.	0.5	0
27	Redox-Controlled Ion-Pairing Association of Anionic Surfactant to Ferrocene-Terminated Self-Assembled Monolayers. Langmuir, 2015, 31, 6385-6394.	3.5	19
28	Gel-to-Fluid Phase Transformations in Solid-Supported Phospholipid Bilayers Assembled by the Langmuir–Blodgett Technique: Effect of the Langmuir Monolayer Phase State and Molecular Density. Journal of Physical Chemistry B, 2014, 118, 9708-9721.	2.6	11
29	Microcantilevers Bend to the Pressure of Clustered Redox Centers. Langmuir, 2014, 30, 742-752.	3.5	16
30	Calibration of a fan-shaped beam surface plasmon resonance instrument for quantitative adsorbed thin film studiesâ€"No metal film thickness or optical properties required. Sensors and Actuators B: Chemical, 2013, 176, 736-745.	7.8	8
31	Understanding and Controlling Morphology Formation in Langmuir–Blodgett Block Copolymer Films Using PS-P4VP and PS-P4VP/PDP. Langmuir, 2013, 29, 4502-4519.	3.5	43
32	Redox-Induced Ion Pairing of Anionic Surfactants with Ferrocene-Terminated Self-Assembled Monolayers: Faradaic Electrochemistry and Surfactant Aggregation at the Monolayer/Liquid Interface. Journal of the American Chemical Society, 2013, 135, 17457-17468.	13.7	32
33	Polydopamine-Supported Lipid Bilayers. Materials, 2012, 5, 2621-2636.	2.9	23
34	Influence of Hydrophobic Alkylated Gold Nanoparticles on the Phase Behavior of Monolayers of DPPC and Clinical Lung Surfactant. Langmuir, 2012, 28, 628-639.	3.5	75
35	Microcantilevers Modified with Ferrocene-Terminated Self-Assembled Monolayers: Effect of Molecular Structure and Electrolyte Anion on the Redox-Induced Surface Stress. Journal of Physical Chemistry C, 2011, 115, 1985-1995.	3.1	35
36	Pressure-Induced Order Transition in Nanodot-Forming Diblock Copolymers at the Air/Water Interface. Journal of the American Chemical Society, 2011, 133, 19702-19705.	13.7	23

#	Article	IF	CITATIONS
37	Redox-Induced Actuation of Microcantilevers Modified with Ferrocenylalkanethiolate Self-Assembled Monolayers. ECS Transactions, 2011, 35, 13-24.	0.5	0
38	Self-Patterned Mixed Phospholipid Monolayers for the Spatially Selective Deposition of Metals. Langmuir, 2010, 26, 17058-17067.	3.5	4
39	Nanostrand Formation of Block Copolymers at the Air/Water Interface. ACS Nano, 2010, 4, 6825-6835.	14.6	34
40	Redox Actuation of a Microcantilever Driven by a Self-Assembled Ferrocenylundecanethiolate Monolayer: An Investigation of the Origin of the Micromechanical Motion and Surface Stress. Journal of the American Chemical Society, 2009, 131, 2328-2337.	13.7	51
41	Synthesis, Crystal Structures and Thermal Analysis of Two New Silver(I)–Dithioether Lamellar Coordination Polymers. Journal of Chemical Crystallography, 2009, 39, 122-127.	1.1	4
42	Atomic Force Microscopy Imaging of Bacillus thuringiensis Cry1 Toxins Interacting with Insect Midgut Apical Membranes. Journal of Membrane Biology, 2008, 222, 127-139.	2.1	13
43	Spatial variation in the molecular tilt orientational order within the solid domains of phase-separated, mixed dialkylphosphatidylcholine monolayers. Chemistry and Physics of Lipids, 2008, 152, 24-37.	3.2	14
44	Gold(I)â^Dithioether Supramolecular Polymers: Synthesis, Characterization, and Luminescence. Inorganic Chemistry, 2008, 47, 2964-2974.	4.0	27
45	Nanostructured phospholipid membranes. International Journal of Nanotechnology, 2008, 5, 1371.	0.2	14
46	One-Dimensional Coordination Polymers Incorporating Silver(I) Perfluorocarboxylate Cuboctahedral Clusters and the Bis(methylthio)methane Ligand. Inorganic Chemistry, 2007, 46, 3185-3191.	4.0	28
47	Electrochemical Surface Plasmon Resonance Investigation of Dodecyl Sulfate Adsorption to Electroactive Self-Assembled Monolayers via Ion-Pairing Interactions. Langmuir, 2007, 23, 10198-10208.	3.5	25
48	Construction of Viscoelastic Biocompatible Films via the Layer-by-Layer Assembly of Hyaluronan and Phosphorylcholine-Modified Chitosan. Biomacromolecules, 2007, 8, 3169-3176.	5.4	51
49	Synthesis and Characterization of Silver(I) Coordination Networks Bearing Flexible Thioethers:Â Anion versus Ligand Dominated Structures. Inorganic Chemistry, 2006, 45, 1560-1574.	4.0	77
50	Influence of the Anion on the Structure of Bis(methylthio)methane Supramolecular Coordination Complexes. Crystal Growth and Design, 2006, 6, 2674-2685.	3.0	97
51	Probing the Stability of Biocompatible Sodium Hyaluronate/Chitosan Nanocoatings Against Changes in Salinity and pH. Journal of Nanoscience and Nanotechnology, 2006, 6, 1565-1574.	0.9	14
52	1,6-Bis(phenylsulfanyl)hexane. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2476-o2478.	0.2	1
53	Coordination Networks with Flexible Ligands Based on Silver(I) Salts:Â Complexes of 1,3-Bis(phenylthio)propane with Silver(I) Salts of PF6-, CF3COO-, CF3CF2COO-, CF3CF2CF2COO-,p-TsO-, and CF3SO3 Inorganic Chemistry, 2005, 44, 7833-7845.	4.0	50
54	Enzymatic Lithography of Phospholipid Bilayer Films by Stereoselective Hydrolysis. Journal of the American Chemical Society, 2005, 127, 6546-6547.	13.7	25

#	Article	IF	CITATIONS
55	Silver Coodination Polymers with Flexible Ligands. Syntheses, Crystal Structures, and Effect of the Counteranion and the Solvent on the Structure of Complexes [AgL1X]â^žof the Bis(Phenylthio)methane LigandL1with Silver(I) Salts, X = ClO4-, BF4-, CF3COO-, CF3SO3-, CF3CF2CF2COO-, and-OOCCF2CF2COO Crystal Growth and Design, 2005, 5, 1897-1906.	3.0	88
56	Effect of Molecular Weight on the Exponential Growth and Morphology of Hyaluronan/Chitosan Multilayers:Â A Surface Plasmon Resonance Spectroscopy and Atomic Force Microscopy Investigation. Journal of the American Chemical Society, 2005, 127, 9224-9234.	13.7	185
57	Monolayer/bilayer transition in Langmuir films of derivatized gold nanoparticles at the gas/water interface: An x-ray scattering study. Journal of Chemical Physics, 2004, 120, 3446-3459.	3.0	51
58	Atomic force microscopy studies of lateral phase separation in mixed monolayers of dipalmitoylphosphatidylcholine and dilauroylphosphatidylcholine. Thin Solid Films, 2003, 440, 223-239.	1.8	48
59	Nanomechanical Cantilever Motion Generated by a Surface-Confined Redox Reaction. Journal of Physical Chemistry B, 2003, 107, 10691-10695.	2.6	38
60	Nanoscale Stripe Patterns in Phospholipid Bilayers Formed by the Langmuirâ [*] Blodgett Technique. Langmuir, 2003, 19, 8041-8049.	3.5	38
61	Highly Parallel, Nanoscale Stripe Morphology in Mixed Phospholipid Monolayers Formed by Langmuirâ^Blodgett Transfer. Langmuir, 2002, 18, 4414-4419.	3.5	59
62	Self-Assembled Masks for the Transfer of Nanometer-Scale Patterns into Surfaces:  Characterization by AFM and LFM. Nano Letters, 2002, 2, 131-135.	9.1	31
63	Spatially Directed Protein Adsorption by Using a Novel, Nanoscale Surface Template. Angewandte Chemie, 2002, 114, 4479-4482.	2.0	2
64	Spatially Directed Protein Adsorption by Using a Novel, Nanoscale Surface Template. Angewandte Chemie - International Edition, 2002, 41, 4303-4306.	13.8	34
65	Goldâ^'Sulfur Bonding in 2D and 3D Self-Assembled Monolayers:  XPS Characterization. Journal of Physical Chemistry B, 2000, 104, 6562-6567.	2.6	329
66	A Dynamic View of Self-Assembled Monolayers. Accounts of Chemical Research, 2000, 33, 475-481.	15.6	216
67	Probing the electrochemical deposition and/or desorption of self-assembled and electropolymerizable organic thin films by surface plasmon spectroscopy and atomic force microscopy. Sensors and Actuators B: Chemical, 1999, 54, 145-165.	7.8	68
68	Anodic Polymerization of Phenol-Modified Biotin: Patterned Deposition and Layer Characterization. Advanced Materials, 1999, 11, 809-814.	21.0	11
69	The Effect of Terminal Hydrogen Bonding on the Structure and Dynamics of Nanoparticle Self-Assembled Monolayers (SAMs): An NMR Dynamics Study. Advanced Materials, 1998, 10, 475-480.	21.0	51
70	Thermal Treatment of n-Alkanethiolate Monolayers on Gold, As Observed by Infrared Spectroscopy. Langmuir, 1998, 14, 2361-2367.	3.5	112
71	Goldâ^'Sulfur Interactions in Alkylthiol Self-Assembled Monolayers Formed on Gold Nanoparticles Studied by Solid-State NMR. Journal of the American Chemical Society, 1997, 119, 11104-11105.	13.7	133
72	Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles:Â A DSC, FT-IR, and Deuterium NMR Study. Journal of the American Chemical Society, 1997, 119, 2682-2692.	13.7	347

Antonella Badia

#	Article	IF	CITATIONS
73	Structure and Chain Dynamics of Alkanethiol-Capped Gold Colloids. Langmuir, 1996, 12, 1262-1269.	3.5	310
74	Selfâ€Assembled Monolayers on Gold Nanoparticles. Chemistry - A European Journal, 1996, 2, 359-363.	3.3	305
75	Phase Transitions in Self-Assembled Monolayers Detected by Electrochemistry. Angewandte Chemie International Edition in English, 1994, 33, 2332-2335.	4.4	54
76	Elektrochemischer Nachweis von Phasenübergägen in selbstaggregierten Monoschichten. Angewandte Chemie, 1994, 106, 2429-2431.	2.0	8
77	Intramolecular electron-transfer rates in ferrocene-derivatized glucose oxidase. Journal of the American Chemical Society, 1993, 115, 7053-7060.	13.7	148
78	Determination of ferrocene iron in protein matrices. Analytica Chimica Acta, 1992, 262, 87-90.	5.4	13