
Christoph Kerzig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiâ€Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angewandte Chemie - International Edition, 2020, 59, 10266-10284.	7.2	246
2	Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 2122-2127.	6.6	120
3	Manganese(i) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nature Chemistry, 2021, 13, 956-962.	6.6	91
4	Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 2018, 9, 6670-6678.	3.7	90
5	UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water. Journal of the American Chemical Society, 2020, 142, 10468-10476.	6.6	79
6	Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. European Journal of Medicinal Chemistry, 2017, 127, 1-9.	2.6	78
7	Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 2019, 10, 11023-11029.	3.7	69
8	A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine) ₃] ²⁺ and Its Application in Red-to-Blue Upconversion. Journal of the American Chemical Society, 2021, 143, 1651-1663.	6.6	69
9	Combining energy and electron transfer in a supramolecular environment for the "green―generation and utilization of hydrated electrons through photoredox catalysis. Chemical Science, 2016, 7, 3862-3868.	3.7	67
10	Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Angewandte Chemie - International Edition, 2020, 59, 9659-9668.	7.2	59
11	An "Allâ€Green―Catalytic Cycle of Aqueous Photoionization. Angewandte Chemie - International Edition, 2014, 53, 9914-9916.	7.2	51
12	Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies. ACS Catalysis, 2020, 10, 210-215.	5.5	51
13	Sensitization-initiated electron transfer <i>via</i> upconversion: mechanism and photocatalytic applications. Chemical Science, 2021, 12, 9922-9933.	3.7	50
14	Laboratory-scale photoredox catalysis using hydrated electrons sustainably generated with a single green laser. Chemical Science, 2017, 8, 7510-7520.	3.7	45
15	Multiphotonenâ€Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angewandte Chemie, 2020, 132, 10350-10370.	1.6	44
16	Efficient Tripletâ€Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
17	Aryl dechlorination and defluorination with an organic super-photoreductant. Photochemical and Photobiological Sciences, 2020, 19, 1035-1041.	1.6	36
18	Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis. Jacs Au, 2021, 1, 819-832.	3.6	35

CHRISTOPH KERZIG

#	Article	IF	CITATIONS
19	Purely organic Vis-to-UV upconversion with an excited annihilator singlet beyond 4 eV. Journal of Materials Chemistry C, 2022, 10, 4568-4573.	2.7	30
20	3-Aminoperylene and ascorbate in aqueous SDS, one green laser flash … and action! Sustainably detoxifying a recalcitrant chloro-organic. Photochemical and Photobiological Sciences, 2017, 16, 1613-1622.	1.6	27
21	Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Accounts of Chemical Research, 2022, 55, 1290-1300.	7.6	26
22	Highly efficient green-light ionization of an aryl radical anion: key step in a catalytic cycle of electron formation. Physical Chemistry Chemical Physics, 2014, 16, 25342-25349.	1.3	25
23	Sustainable, inexpensive and easy-to-use access to the super-reductant e誉~aq through 355 nm photoionization of the ascorbate dianion—an alternative to radiolysis or UV-C photochemistry. Green Chemistry, 2016, 18, 4761-4771.	4.6	24
24	Cluster phases of 4-cyanoresorcinol derived hockey-stick liquid crystals. Journal of Materials Chemistry C, 2017, 5, 8454-8468.	2.7	23
25	Generating hydrated electrons through photoredox catalysis with 9-anthrolate. Physical Chemistry Chemical Physics, 2015, 17, 13829-13836.	1.3	19
26	Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis. Chemical Science, 2019, 10, 5624-5633.	3.7	19
27	Controlling Spin orrelated Radical Pairs with Donor–Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis. Chemistry - A European Journal, 2021, 27, 4115-4123.	1.7	18
28	Counterintuitive Influence of Protonation on Radicalâ€Anion Photoionization. Angewandte Chemie - International Edition, 2012, 51, 12606-12608.	7.2	16
29	Converting <i>p</i> -terphenyl into a novel organo-catalyst for LED-driven energy and electron transfer photoreactions in water. Chemical Communications, 2021, 57, 6752-6755.	2.2	16
30	Laserâ€Induced Wurtzâ€Type Syntheses with a Metalâ€Free Photoredox Catalytic Source of Hydrated Electrons. Chemistry - A European Journal, 2019, 25, 9991-9996.	1.7	14
31	Green-light ionization of 3-aminoperylene in SDS micelles—a promising access to hydrated electrons despite a myth debunked. Photochemical and Photobiological Sciences, 2017, 16, 185-192.	1.6	13
32	Resveratrol Radical Repair by Vitaminâ€C at the Micelle–Water Interface: Unexpected Reaction Rates Explained by Ion–Dipole Interactions. Chemistry - A European Journal, 2018, 24, 3038-3044.	1.7	13
33	Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Angewandte Chemie, 2020, 132, 9746-9755.	1.6	13
34	Transition from nematic to gyroid-type cubic soft self-assembly by side-chain engineering of Ï€-conjugated sticky rods. Soft Matter, 2017, 13, 4381-4392.	1.2	12
35	A new approach to elucidating repair reactions of resveratrol. Physical Chemistry Chemical Physics, 2015, 17, 13915-13920.	1.3	11
36	Photoionization access to cyclodextrin-encapsulated resveratrol phenoxy radicals and their repair by ascorbate across the phase boundary. Physical Chemistry Chemical Physics, 2016, 18, 20802-20811.	1.3	11

CHRISTOPH KERZIG

#	Article	IF	CITATIONS
37	Combined static and dynamic quenching in micellar systems—closed-form integrated rate laws verified using a versatile probe. Physical Chemistry Chemical Physics, 2017, 19, 8735-8741.	1.3	10
38	Vinylcyclopropane [3+2] Cycloaddition with Acetylenic Sulfones Based on Visible Light Photocatalysis**. Chemistry - A European Journal, 2022, 28, .	1.7	10
39	Water-soluble ruthenium complex-pyrene dyads with extended triplet lifetimes for efficient energy transfer applications. Dalton Transactions, 2022, 51, 10799-10808.	1.6	10
40	Efficient Tripletâ€Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angewandte Chemie, 2022, 134, .	1.6	9
41	Improved Photostability of a Cu I Complex by Macrocyclization of the Phenanthroline Ligands. Chemistry - A European Journal, 2020, 26, 3119-3128.	1.7	8
42	Stepwise Photoinduced Electron Transfer in a Tetrathiafulvaleneâ€Phenothiazineâ€Ruthenium Triad. European Journal of Inorganic Chemistry, 2019, 2019, 4256-4262.	1.0	6
43	Different Modes of Deformation of Soft Triangular Honeycombs at the Subâ€5Ânm Scale. Advanced Materials, 2020, 32, e2005070.	11.1	3