
Jianxin Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886284/publications.pdf Version: 2024-02-01

Ιιανίχιν Υι

#	Article	IF	CITATIONS
1	Detection of vapors from overheated PVC cables with modified sea urchin-like ZnO for fire warning. Sensors and Actuators B: Chemical, 2022, 350, 130841.	7.8	5
2	The relation between mixed-potential hydrogen response and electrochemical activities for perovskite oxides. Sensors and Actuators B: Chemical, 2022, 352, 130988.	7.8	13
3	Electrochemical Response of Mixed Conducting Perovskite Enables Low-Cost High-Efficiency Hydrogen Sensing. ACS Applied Materials & Interfaces, 2022, 14, 33580-33588.	8.0	14
4	Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods. Sensors and Actuators B: Chemical, 2021, 333, 129545.	7.8	35
5	Analysis of factors affecting response for mixed potential gas sensors. Electrochimica Acta, 2021, 379, 138129.	5.2	23
6	Gas sensing properties of asymmetrically reduced Na1/2Bi1/2TiO3–based ceramics. Ceramics International, 2021, 48, 556-556.	4.8	0
7	MOF-derived Au-loaded Co3O4 porous hollow nanocages for acetone detection. Sensors and Actuators B: Chemical, 2021, 344, 130182.	7.8	44
8	Drastically Enhanced Ammonia Sensing of Pt/ZnO Ordered Porous Ultra-Thin Films. Sensors and Actuators B: Chemical, 2020, 317, 128217.	7.8	36
9	Superior NO ₂ Sensing of MOF-Derived Indium-Doped ZnO Porous Hollow Cages. ACS Applied Materials & Interfaces, 2020, 12, 37489-37498.	8.0	84
10	Potentiometric hydrogen sensing of ordered SnO2 thin films. Sensors and Actuators B: Chemical, 2020, 321, 128505.	7.8	19
11	Nanostructured SnO2- and ZnO-Based Gas Sensors for Early Warning of Electrical Fires. ECS Meeting Abstracts, 2020, MA2020-01, 2176-2176.	0.0	1
12	Indium-Doped ZnO Porous Cages Derived from ZIF-8 for Ppb-Level NO2 Detection. ECS Meeting Abstracts, 2020, MA2020-01, 2065-2065.	0.0	0
13	Performance Tailoring of Mixed-Potential Hydrogen Sensor with Perovskite Oxide Sensing Electrode. ECS Meeting Abstracts, 2020, MA2020-01, 2105-2105.	0.0	0
14	Improving Hydrogen Sensing Performance of TiO2 Nanotube Arrays by ZnO Modification. Frontiers in Materials, 2019, 6, .	2.4	16
15	Insights into the CO ₂ Stability-Performance Trade-Off of Antimony-Doped SrFeO _{3â~î(} Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 11498-11506.	8.0	36
16	Sensitive and selective detection of plasticizer vapors with modified-SnO2 hollow nanofibers for electrical fire warning. Sensors and Actuators B: Chemical, 2019, 287, 364-370.	7.8	25
17	Detection of Semi-volatile Plasticizers as a Signature of Early Electrical Fire. Frontiers in Materials, 2019, 6, .	2.4	11
18	Synthesis and enhanced NO2-sensing properties of ZnO-decorated SnO2 microspheres. Materials Letters, 2019, 236, 570-573.	2.6	25

Jianxin Yi

#	Article	IF	CITATIONS
19	One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	28
20	Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO 3 perovskite nanoparticles. Materials Letters, 2018, 216, 196-198.	2.6	36
21	Hierarchical porous hollow SnO2 nanofiber sensing electrode for high performance potentiometric H2 sensor. Sensors and Actuators B: Chemical, 2018, 268, 456-464.	7.8	38
22	Remarkably enhanced hydrogen sensing of highly-ordered SnO2-decorated TiO2 nanotubes. Sensors and Actuators B: Chemical, 2018, 273, 983-990.	7.8	45
23	Fast Response, Highly Sensitive and Selective Mixed-Potential H ₂ Sensor Based on (La,) Tj ETQq1 1 17218-17225.	0.784314 8.0	rgBT /Overlo 41
24	Asymmetric La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ membrane with reduced concentration polarization prepared by phase-inversion tape casting and warm pressing. Journal of Membrane Science, 2017, 533, 11-18.	8.2	25
25	Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method. Sensors and Actuators B: Chemical, 2017, 243, 96-103.	7.8	86
26	Highly Responsive and Selective Ethanol Gas Sensor Based on Co3O4-Modified SnO2 Nanofibers. Chinese Journal of Chemical Physics, 2017, 30, 474-478.	1.3	9
27	A modelling study of the multiphase leakage flow from pressurised CO 2 pipeline. Journal of Hazardous Materials, 2016, 306, 286-294.	12.4	34
28	An experimental investigation of supercritical CO 2 accidental release from a pressurized pipeline. Journal of Supercritical Fluids, 2016, 107, 298-306.	3.2	30
29	A Feasibility Study of using Cosmic Ray Muons to Monitor Supercritical CO2 Migration in Geological Formations. Energy Procedia, 2015, 75, 2299-2304.	1.8	1
30	A Model for Predicting Temperature Produced by Upward Spreading Cable Fire under Natural Ventilation. Energy Procedia, 2015, 66, 177-180.	1.8	4
31	Experimental Investigation of CO2 Accidental Release from a Pressurised Pipeline. Energy Procedia, 2015, 75, 2221-2226.	1.8	6
32	Structure, Electrical and Oxygen Transport Properties of Fe-Doped SrCoO3—Î′ Perovskites. Chinese Journal of Chemical Physics, 2015, 28, 189-192.	1.3	4
33	Influence of CO2 on Oxygen Surface Exchange Kinetics of Mixed-Conducting Ba0.5Sr0.5Co0.8Fe0.2O3—δ Oxide. Chinese Journal of Chemical Physics, 2015, 28, 203-205.	1.3	5
34	A Study of Instabilities in Hydrogen-air Impinging Jet Flames Using Two and Three Dimensional Direct Numerical Simulations. Energy Procedia, 2015, 66, 325-328.	1.8	2
35	Improving the chemical stability of oxygen permeable SrFeO3â^î^ perovskite in CO2 by niobium doping. Solid State Ionics, 2014, 267, 44-48.	2.7	27
36	Phase-inversion tape-casting preparation and significant performance enhancement of Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3â~δdual-phase asymmetric membrane for oxygen separation. Materials Letters, 2014, 137, 245-248.	2.6	33

Jianxin Yi

#	Article	IF	CITATIONS
37	An experimental study on the leakage process of high pressure CO ₂ from a pipeline transport system. , 2014, 4, 777-784.		5
38	Numerical Investigation of the Leakage Flow from a Pressurized CO2 Pipeline. Energy Procedia, 2014, 61, 151-154.	1.8	7
39	CO2 corrosion and recovery of perovskite-type BaCo1â^'xâ^'yFexNbyO3â^'î´ membranes. Journal of Membrane Science, 2013, 437, 49-56.	8.2	55
40	CO ₂ -Tolerant and Cobalt-Free SrFe _{0.8} Nb _{0.2} O _{3â[^]δ} Perovskite Membrane for Oxygen Separation. Chemistry of Materials, 2013, 25, 815-817.	6.7	61
41	Oxidation/Reforming Methane Oxidation Processes Based on Dense Tubular La0.6Sr0.4Co0.2Fe0.8O3-d Membrane Reactor. Asian Journal of Chemistry, 2013, 25, 5765-5768.	0.3	0
42	Oxygen permeation and oxidation states of transition metals in (Fe, Nb)-doped BaCoO3â^´Î´ perovskites. Journal of Membrane Science, 2012, 387-388, 17-23.	8.2	35
43	High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ membranes in atmospheres containing concentrated carbon dioxide. Journal of Membrane Science, 2011, 378, 163-170.	8.2	43
44	Behavior of Ba(Co, Fe, Nb)O _{3-î´} Perovskite in CO ₂ -Containing Atmospheres: Degradation Mechanism and Materials Design. Chemistry of Materials, 2010, 22, 6246-6253.	6.7	180
45	High-temperature compressive creep behaviour of the perovskite-type oxide Ba0.5Sr0.5Co0.8Fe0.2O3â~δ. Solid State Ionics, 2009, 180, 1564-1568.	2.7	46
46	A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Physical Chemistry Chemical Physics, 2009, 11, 9640.	2.8	111
47	Determination of A-site deficiency in lanthanum manganite by XRD intensity ratio. Journal of Solid State Chemistry, 2008, 181, 700-704.	2.9	15
48	Oxygen permeation through a Ce0.8Sm0.2O2â~Îſ–La0.8Sr0.2CrO3â~Îſ dual-phase composite membrane. Journal of Membrane Science, 2006, 280, 849-855.	8.2	81
49	Stability and oxygen permeation behavior of Ce0.8Sm0.2O2â^'Î′–La0.8Sr0.2CrO3â^'Î′ composite membrane under large oxygen partial pressure gradients. Journal of Membrane Science, 2006, 286, 22-25.	8.2	41
50	Oxygen Permeability and Stability of Sr0.95Co0.8Fe0.2O3-Î′ in a CO2- and H2O-Containing Atmosphere ChemInform, 2006, 37, no.	0.0	6
51	Oxygen Permeability and Stability of Sr0.95Co0.8Fe0.2O3-δin a CO2- and H2O-Containing Atmosphere. Chemistry of Materials, 2005, 17, 5856-5861.	6.7	104