
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A green and easy-to-assemble electrochemical biosensor based on thylakoid membranes for photosynthetic herbicides detection. Biosensors and Bioelectronics, 2022, 198, 113838.	5.3	4
2	High-Light versus Low-Light: Effects on Paired Photosystem II Supercomplex Structural Rearrangement in Pea Plants. International Journal of Molecular Sciences, 2020, 21, 8643.	1.8	13
3	lce-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites. Renewable Energy, 2020, 160, 698-706.	4.3	32
4	How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. Nature Communications, 2020, 11, 1361.	5.8	57
5	Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance. RSC Advances, 2019, 9, 15573-15581.	1.7	7
6	Structural and functional differentiation of the lightâ€harvesting protein Lhcb4 during land plant diversification. Physiologia Plantarum, 2019, 166, 336-350.	2.6	14
7	Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green's functions–density functional tight-binding study. Nano Research, 2019, 12, 791-799.	5.8	29
8	A fluid dynamics perspective on material selection in microbial fuel cell-based biosensors. International Journal of Hydrogen Energy, 2019, 44, 4533-4542.	3.8	21
9	Edgeâ€Grafted Molecular Junctions between Graphene Nanoplatelets: Applied Chemistry to Enhance Heat Transfer in Nanomaterials. Advanced Functional Materials, 2018, 28, 1706954.	7.8	39
10	Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polymer Degradation and Stability, 2018, 152, 1-9.	2.7	92
11	Controlling the melt dripping of polyester fabrics by tuning the ionic strength of polyhedral oligomeric silsesquioxane and sodium montmorillonite coatings assembled through Layer by Layer. Journal of Colloid and Interface Science, 2018, 510, 142-151.	5.0	65
12	Molecular junctions for thermal transport between graphene nanoribbons: Covalent bonding vs. interdigitated chains. Computational Materials Science, 2018, 142, 255-260.	1.4	11
13	Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. Plant Physiology and Biochemistry, 2018, 132, 524-534.	2.8	2
14	Graphene Oxide Exoskeleton to Produce Selfâ€Extinguishing, Nonignitable, and Flame Resistant Flexible Foams: A Mechanically Tough Alternative to Inorganic Aerogels. Advanced Materials Interfaces, 2018, 5, 1801288.	1.9	59
15	Power to Fuels: Dynamic Modeling of a Slurry Bubble Column Reactor in Lab-Scale for Fischer Tropsch Synthesis under Variable Load of Synthesis Gas. Applied Sciences (Switzerland), 2018, 8, 514.	1.3	16
16	Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a nonâ€model organism aided by transcriptomic data integration. Plant Journal, 2018, 96, 786-800.	2.8	27
17	Analysis of the light intensity dependence of the growth of <i>Synechocystis</i> and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ, 2018, 6, e5256.	0.9	31
18	Core-substituted naphthalenediimides anchored on BiVO ₄ for visible light-driven water splitting. Green Chemistry, 2017, 19, 2448-2462.	4.6	11

#	Article	IF	CITATIONS
19	Syngas production from electrochemical reduction of CO ₂ : current status and prospective implementation. Green Chemistry, 2017, 19, 2326-2346.	4.6	281
20	Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific Reports, 2017, 7, 10067.	1.6	30
21	Supernucleation and Orientation of Poly(butylene terephthalate) Crystals in Nanocomposites Containing Highly Reduced Graphene Oxide. Macromolecules, 2017, 50, 9380-9393.	2.2	34
22	A simple model for a complex system: Kinetics of water oxidation with the [Ru(bpy) 3] 2+ /S 2 O 8 2â^' photosystem as catalyzed by Mn 2 O 3 under different illumination conditions. Chemical Engineering Journal, 2017, 311, 143-152.	6.6	13
23	Development of an Electrochemical Process for the Simultaneous Treatment of Wastewater and the Conversion of Carbon Dioxide to Higher Value Products. ChemElectroChem, 2017, 4, 150-159.	1.7	50
24	Spin-Coated vs. Electrodeposited Mn Oxide Films as Water Oxidation Catalysts. Materials, 2016, 9, 296.	1.3	31
25	Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1651-1660.	0.5	70
26	Environmental issues regarding CO2 and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials. Journal of Environmental Chemical Engineering, 2016, 4, 3934-3953.	3.3	35
27	Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science, 2016, 354, 203-206.	6.0	748
28	Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy. Photosynthesis Research, 2016, 130, 19-31.	1.6	24
29	Green-synthesized W- and Mo-doped BiVO4 oriented along the {0 4 0} facet with enhanced activity for the sun-driven water oxidation. Applied Catalysis B: Environmental, 2016, 180, 630-636.	10.8	156
30	Green and low-cost synthesis of PANI–TiO ₂ nanocomposite mesoporous films for photoelectrochemical water splitting. RSC Advances, 2015, 5, 49429-49438.	1.7	83
31	Catalytic degradation of Acid Orange 7 by H2O2as promoted by either bare or V-loaded titania under UV light, in dark conditions, and after incubating the catalysts in ascorbic acid. Journal of Lithic Studies, 2015, 1, 183-191.	0.1	8
32	A model for electrode effects based on adsorption theory. Electrochimica Acta, 2015, 178, 280-286.	2.6	11
33	Comparison of photocatalytic and transport properties of TiO ₂ and ZnO nanostructures for solar-driven water splitting. Physical Chemistry Chemical Physics, 2015, 17, 7775-7786.	1.3	234
34	Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chemical Engineering Journal, 2015, 278, 36-45.	6.6	15
35	Nanostructured TiO2/KIT-6 catalysts for improved photocatalytic reduction of CO2 to tunable energy products. Applied Catalysis B: Environmental, 2015, 170-171, 53-65.	10.8	42
36	Photo-catalytic activity of BiVO4 thin-film electrodes for solar-driven water splitting. Applied Catalysis A: General, 2015, 504, 266-271.	2.2	58

GUIDO SARACCO

#	Article	IF	CITATIONS
37	Development of a Photosynthetic Microbial Electrochemical Cell (PMEC) Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives. Energies, 2015, 8, 399-429.	1.6	33
38	Considerations on Oxygen Bubble Formation and Evolution on BiVO ₄ Porous Anodes Used in Water Splitting Photoelectrochemical Cells. Journal of Physical Chemistry C, 2015, 119, 9916-9925.	1.5	65
39	Nanoparticles of CoAPO-5: synthesis and comparison with microcrystalline samples. Physical Chemistry Chemical Physics, 2015, 17, 10774-10780.	1.3	8
40	Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas. Fuel, 2015, 149, 55-65.	3.4	80
41	New optimized mesoporous silica incorporated isolated Ti materials towards improved photocatalytic reduction of carbon dioxide to renewable fuels. Chemical Engineering Journal, 2015, 278, 279-292.	6.6	25
42	Elucidation of important parameters of BiVO4 responsible for photo-catalytic O2 evolution and insights about the rate of the catalytic process. Chemical Engineering Journal, 2014, 245, 124-132.	6.6	63
43	Green-Synthesized BiVO ₄ Oriented along {040} Facets for Visible-Light-Driven Ethylene Degradation. Industrial & Engineering Chemistry Research, 2014, 53, 2640-2646.	1.8	73
44	Thick mesoporous TiO 2 films through a sol–gel method involving a non-ionic surfactant: Characterization and enhanced performance for water photo-electrolysis. International Journal of Hydrogen Energy, 2014, 39, 21512-21522.	3.8	37
45	New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting. Electrochimica Acta, 2014, 131, 184-194.	2.6	35
46	Proteomic characterization and three-dimensional electron microscopy study of PSII–LHCII supercomplexes from higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1454-1462.	0.5	31
47	The behaviour of an old catalyst revisited in a wet environment: Co ions in APO-5 split water under mild conditions. Physical Chemistry Chemical Physics, 2014, 16, 7074-7082.	1.3	7
48	Outer Co(ii) ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid water. Physical Chemistry Chemical Physics, 2014, 16, 6139.	1.3	66
49	Electric investigation of a photo-electrochemical water splitting device based on a proton exchange membrane within drilled FTO-covered quartz electrodes: under dark and light conditions. Electrochimica Acta, 2014, 144, 352-360.	2.6	12
50	New nanostructured silica incorporated with isolated Ti material for the photocatalytic conversion of CO2 to fuels. Nanoscale Research Letters, 2014, 9, 158.	3.1	14
51	A new method for studying activity and reaction kinetics of photocatalytic water oxidation systems using a bubbling reactor. Chemical Engineering Journal, 2014, 238, 17-26.	6.6	21
52	Electric response of an electrolytic cell to a periodic excitation in the dc limit. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1883-1887.	0.9	1
53	Interesterification of rapeseed oil catalyzed by tin octoate. Biomass and Bioenergy, 2014, 67, 193-200.	2.9	20
54	Eu-doped α-Fe2O3 nanoparticles with modified magnetic properties. Journal of Solid State Chemistry, 2013, 201, 302-311.	1.4	39

4

#	Article	IF	CITATIONS
55	Structural, functional and auxiliary proteins of photosystem II. Photosynthesis Research, 2013, 116, 167-188.	1.6	102
56	Artificial Photosynthesis for Solar Fuels – an Evolving Research Field within AMPEA, a Joint Programme of the European Energy Research Alliance. Green, 2013, 3, .	0.4	62
57	Novel Ti-KIT-6 material for the photocatalytic reduction of carbon dioxide to methane. Catalysis Communications, 2013, 36, 58-62.	1.6	33
58	Process design accompanying life cycle management and risk analysis as a decision support tool for sustainable biodiesel production. Green Chemistry, 2013, 15, 463-477.	4.6	52
59	Evaluation of the Parameters Affecting the Visible-Light-Induced Photocatalytic Activity of Monoclinic BiVO ₄ for Water Oxidation. Industrial & Engineering Chemistry Research, 2013, 52, 17414-17418.	1.8	72
60	Supercritical fluid technology in biodiesel production. Green Processing and Synthesis, 2013, 2, .	1.3	10
61	Characterization of PSII–LHCII supercomplexes isolated from pea thylakoid membrane by one-step treatment with α- and β-dodecyl- <scp>d</scp> -maltoside. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3389-3399.	1.8	35
62	NO _{<i>x</i>} Abatement by HC-Assisted SCR over Combustion Synthesized-Supported Ag Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 7467-7474.	1.8	7
63	X-Ray Spectroscopy Tools for the Characterization of Nanoparticles. , 2012, , .		Ο
64	Morphology and conduction properties of graphiteâ€filled immiscible PVDF/PPgMA blends. Polymers for Advanced Technologies, 2012, 23, 1572-1579.	1.6	24
65	Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide. ChemSusChem, 2012, 5, 500-521.	3.6	203
66	Comparison of the α and β isomeric forms of the detergent n-dodecyl-D-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1506-1515.	0.5	47
67	Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO ₂ Nanoparticles. Industrial & Engineering Chemistry Research, 2011, 50, 2536-2543.	1.8	78
68	Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal, 2011, 175, 330-340.	6.6	46
69	One-step isolation and biochemical characterization of a highly active plant PSII monomeric core. Photosynthesis Research, 2011, 108, 33-46.	1.6	16
70	Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal, 2011, 166, 138-149.	6.6	116
71	Development of a planar μDMFC operating at room temperature. International Journal of Hydrogen Energy, 2011, 36, 8088-8093.	3.8	21
72	NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment. Chemical Engineering Science, 2010, 65, 120-127.	1.9	41

#	Article	IF	CITATIONS
73	CO-selective methanation over Ru–γAl2O3 catalysts in H2-rich gas for PEM FC applications. Chemical Engineering Science, 2010, 65, 590-596.	1.9	109
74	Combustion of CH4/H2/Air Mixtures in Catalytic Microreactors. ChemPhysChem, 2009, 10, 783-786.	1.0	7
75	Electrochemical oxidation process for water condensates recycling in a shuttle orbiter. Journal of Applied Electrochemistry, 2009, 39, 2239-2249.	1.5	3
76	Photo-catalytic coating of polystyrene for household cooling appliances with self cleaning surfaces. Journal of Applied Electrochemistry, 2009, 39, 2265-2273.	1.5	6
77	Gold-Supported Catalysts for Medium Temperature-Water Gas Shift Reaction. Topics in Catalysis, 2009, 52, 688-692.	1.3	23
78	MCFC-based marine APU: Comparison between conventional ATR and cracking coupled with SR integrated inside the stack pressurized vessel. International Journal of Hydrogen Energy, 2009, 34, 2026-2042.	3.8	49
79	New concept for soot removal from a syngas mixture. Journal of Power Sources, 2009, 193, 338-341.	4.0	7
80	Effect of S-compounds on Pd over LaMnO3·2ZrO2 and CeO2·2ZrO2 catalysts for CH4 combustion. Catalysis Today, 2009, 143, 86-93.	2.2	29
81	Electrokinetic remediation of soils contaminated with heavy metals. Journal of Applied Electrochemistry, 2008, 38, 1035-1041.	1.5	18
82	Removal of NOx and diesel soot over catalytic traps based on spinel-type oxides. Powder Technology, 2008, 180, 74-78.	2.1	48
83	Compact direct methanol fuel cells for portable application. Journal of Power Sources, 2008, 176, 460-467.	4.0	46
84	Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters. Catalysis Today, 2008, 137, 306-311.	2.2	48
85	Towards a single brick solution for the abatement of NOx and soot from diesel engine exhausts. Catalysis Today, 2008, 137, 300-305.	2.2	32
86	Lanthanum cobaltite catalysts for diesel soot combustion. Applied Catalysis B: Environmental, 2008, 83, 85-95.	10.8	105
87	CO preferential oxidation in H2-rich gas for fuel cell applications: Microchannel reactor performance with Rh-based catalyst. International Journal of Hydrogen Energy, 2008, 33, 3045-3048.	3.8	28
88	Desulfurization processes for fuel cells systems. International Journal of Hydrogen Energy, 2008, 33, 3209-3214.	3.8	53
89	Modeling of an APU system based on MCFC. International Journal of Hydrogen Energy, 2008, 33, 3393-3401.	3.8	29
90	Catalytic Performance of Rhodium-Based Catalysts for CO Preferential Oxidation in H ₂ -Rich Gases. Industrial & Engineering Chemistry Research, 2008, 47, 5304-5312.	1.8	52

#	Article	IF	CITATIONS
91	Final CO Clean-up Step of Reformate Gases via Methanation Process. ECS Transactions, 2008, 12, 579-587.	0.3	2
92	CO Methanation as Alternative Refinement Process for CO Abatement in H2-Rich Gas for PEM Applications. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	3
93	CO Preferential Oxidation Over Rh-supported Catalyst in H2-rich Gas for Fuel Cell Applications. ECS Transactions, 2007, 5, 677-685.	0.3	4
94	Study of an Electrochemical Alcohol Concentration Sensor: Optimization of the Anode Structure. Journal of Fuel Cell Science and Technology, 2007, 4, 345-349.	0.8	5
95	Supported Pd-perovskite catalyst for CNG engines' exhaust gas treatment. Progress in Solid State Chemistry, 2007, 35, 501-511.	3.9	40
96	Fate of Organic Nitrogen during Electrooxidation over Conductive Metal Oxide Anodes. Industrial & Engineering Chemistry Research, 2007, 46, 6783-6787.	1.8	11
97	N2O Decomposition over Perovskite Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 4226-4231.	1.8	111
98	Aging of Premixed Metal Fiber Burners for Natural Gas Combustion Catalyzed with Pd/LaMnO ₃ ·2ZrO ₂ . Industrial & Engineering Chemistry Research, 2007, 46, 6666-6673.	1.8	18
99	Combined steady state and transient optimization for dynamic smoke reduction on Heavy Duty engine (TIER3 Applications). , 2007, , .		2
100	N2O catalytic decomposition over various spinel-type oxides. Catalysis Today, 2007, 119, 228-232.	2.2	151
101	LiCoO2 catalyst for diesel particulate abatement. Catalysis Today, 2007, 119, 257-261.	2.2	35
102	Preparation and regeneration of a catalytic diesel particulate filter. Chemical Engineering Science, 2007, 62, 5182-5185.	1.9	27
103	Three-compartment electro-oxidation reactor for bio-refractory organics degradation. Chemical Engineering Science, 2007, 62, 5644-5647.	1.9	4
104	Fuel processor based on syngas production via short contact time catalytic partial oxidation reactors. Applied Catalysis B: Environmental, 2007, 70, 525-531.	10.8	36
105	Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 2007, 70, 479-487.	10.8	171
106	Secondary nanoparticle emissions during diesel particulate trap regeneration. Topics in Catalysis, 2007, 42-43, 253-257.	1.3	12
107	Activity of rhodium-based catalysts for CO preferential oxidation in H2-rich gases. Topics in Catalysis, 2007, 45, 15-19.	1.3	30
108	Catalytic wall-flow filters for the abatement of diesel particulate: regeneration parameters study. Topics in Catalysis, 2007, 45, 125-129.	1.3	4

#	Article	IF	CITATIONS
109	Preferential CO oxidation over Pt/3A zeolite catalysts in H2-rich gas for fuel cell application. Journal of Porous Materials, 2007, 14, 245-250.	1.3	24
110	Concept Study on ATR and SR Fuel Processors for Liquid Hydrocarbons. Industrial & Engineering Chemistry Research, 2006, 45, 5298-5307.	1.8	49
111	PM0.1 Emissions during Diesel Trap Regeneration. Environmental Science & Technology, 2006, 40, 5532-5537.	4.6	37
112	CNG engines exhaust gas treatment via Pd-Spinel-type-oxide catalysts. Catalysis Today, 2006, 117, 559-563.	2.2	54
113	Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR). Journal of Power Sources, 2006, 154, 379-385.	4.0	71
114	La–Li–Cr perovskite catalysts for diesel particulate combustion. Catalysis Today, 2006, 114, 31-39.	2.2	70
115	Supported gold catalysts for CO oxidation. Catalysis Today, 2006, 117, 214-219.	2.2	28
116	Towards practical application of lanthanum chromite catalysts for diesel particulate combustion. Catalysis Today, 2006, 117, 369-375.	2.2	10
117	Palladium/perovskite/zirconia catalytic premixed fiber burners for efficient and clean natural gas combustion. Catalysis Today, 2006, 117, 427-432.	2.2	29
118	Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides. Journal of Catalysis, 2006, 242, 38-47.	3.1	171
119	Novel Approches in Oxidative Catalysis for Diesel Particulate Abatement. Advances in Science and Technology, 2006, 45, 2083-2088.	0.2	1
120	Gas (Particulate) Filtration. , 2006, , 416-438.		4
121	BIOFEAT: Biodiesel fuel processor for a vehicle fuel cell auxiliary power unit. Journal of Power Sources, 2005, 149, 8-14.	4.0	63
122	Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit. Journal of Power Sources, 2005, 145, 683-690.	4.0	36
123	Optimal compositional and structural design of a LaMnO3/ZrO2/Pd-based catalyst for methane combustion. Catalysis Today, 2005, 100, 275-281.	2.2	51
124	Studies on the redox properties of chromite perovskite catalysts for soot combustion. Journal of Catalysis, 2005, 229, 459-469.	3.1	225
125	Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol. Journal of Applied Electrochemistry, 2005, 35, 405-411.	1.5	33
126	Compact Direct Methanol Fuel Cells for Portable Applications: A Modeling Study. International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	9

#	Article	IF	CITATIONS
127	Diesel Particulate Filtration and Combustion in a Wall-Flow Trap Hosting a LiCrO2Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 9549-9555.	1.8	28
128	Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Engineering Chemistry Research, 2005, 44, 759-768.	1.8	14
129	Combining Catalytic Combustion and Steam Reforming in a Novel Multifunctional Reactor for On-Board Hydrogen Production from Middle Distillates. Industrial & Engineering Chemistry Research, 2005, 44, 9422-9430.	1.8	33
130	Multifunctional Filter for Treatment of the Flue Gases from Municipal Waste Incinerators. Industrial & Engineering Chemistry Research, 2005, 44, 9542-9548.	1.8	20
131	Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation: H2 gas purification for fuel cell. Applied Catalysis B: Environmental, 2004, 48, 195-203.	10.8	98
132	Cs–V Catalysts for the Combustion of Diesel Particulate. Topics in Catalysis, 2004, 30/31, 251-255.	1.3	8
133	Nanosized Pt-Perovskite Catalyst for the Regeneration of a Wall-Flow Filter for Soot Removal from Diesel Exhaust Gases. Topics in Catalysis, 2004, 30/31, 299-303.	1.3	21
134	Selective CO-Oxidation over Ru-Based Catalysts in H2-Rich Gas for Fuel Cell Applications. Topics in Catalysis, 2004, 30/31, 475-480.	1.3	24
135	Modeling the partial oxidation of methane in a fixed bed with detailed chemistry. AICHE Journal, 2004, 50, 1289-1299.	1.8	59
136	Steady-state multiplicity, flashback, and control issues in CH4 radiant burners. AICHE Journal, 2004, 50, 2276-2286.	1.8	0
137	In situ combustion synthesis of perovskite catalysts for efficient and clean methane premixed metal burners. Chemical Engineering Science, 2004, 59, 5091-5098.	1.9	59
138	A multifunctional filter for the simultaneous removal of fly-ash and NOx from incinerator flue gases. Chemical Engineering Science, 2004, 59, 5329-5336.	1.9	40
139	Optimal Microstructural Design of a Catalytic Premixed FeCrAlloy Fiber Burner for Methane Combustion. Industrial & Engineering Chemistry Research, 2004, 43, 1990-1998.	1.8	39
140	Tackling the problem of sulfur poisoning of perovskite catalysts for natural gas combustion. Korean Journal of Chemical Engineering, 2003, 20, 222-229.	1.2	19
141	Diesel particulate traps regenerated by catalytic combustion. Korean Journal of Chemical Engineering, 2003, 20, 445-450.	1.2	11
142	Mobile and non-mobile catalysts for diesel-particulate combustion: A kinetic study. Korean Journal of Chemical Engineering, 2003, 20, 451-456.	1.2	4
143	Sulphur poisoning of LaCr0.5â^'xMnxMg0.5O3·yMgO catalysts for methane combustion. Applied Catalysis B: Environmental, 2003, 40, 195-205.	10.8	36
144	Studies on kinetics and reactions mechanism of La2â^'xKxCu1â^'yVyO4 layered perovskites for the combined removal of diesel particulate and NOx. Applied Catalysis B: Environmental, 2003, 43, 243-259.	10.8	130

GUIDO SARACCO

#	Article	IF	CITATIONS
145	The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. Journal of Catalysis, 2003, 217, 367-375.	3.1	255
146	Effect of active species mobility on soot-combustion over Cs-V catalysts. AICHE Journal, 2003, 49, 2173-2180.	1.8	59
147	Innovative means for the catalytic regeneration of particulate traps for diesel exhaust cleaning. Chemical Engineering Science, 2003, 58, 951-958.	1.9	71
148	Premixed metal fibre burners based on a Pd catalyst. Catalysis Today, 2003, 83, 19-31.	2.2	27
149	Combustion synthesis of perovskite-type catalysts for natural gas combustion. Catalysis Today, 2003, 83, 199-211.	2.2	220
150	Zinc Oxide Sorbents for the Removal of Hydrogen Sulfide from Syngas. Industrial & Engineering Chemistry Research, 2003, 42, 1688-1697.	1.8	100
151	Diesel particulate abatement via wall-flow traps based on perovskite catalysts. Annali Di Chimica, 2003, 93, 745-52.	0.6	1
152	Ionic membrane technologies for the recovery of valuable chemicals from waste waters. Annali Di Chimica, 2003, 93, 817-26.	0.6	7
153	Sulfate Species in MgO-Supported LaMn0.5Mg0.5O3 Perovskites:  An Insight into the Chemistry of MgO. Journal of Physical Chemistry B, 2002, 106, 11980-11984.	1.2	8
154	On the generation of aerosol for diesel particulate filtration studies. Separation and Purification Technology, 2002, 27, 195-209.	3.9	27
155	Filtration and catalytic abatement of diesel particulate from stationary sources. Chemical Engineering Science, 2002, 57, 4955-4966.	1.9	30
156	Electrolytic abatement of biorefractory organics by combining bulk and electrode oxidation processes. Chemical Engineering Science, 2001, 56, 1571-1578.	1.9	37
157	Combining filtration and catalytic combustion in particulate traps for diesel exhaust treatment. Chemical Engineering Science, 2001, 56, 1613-1621.	1.9	61
158	Sulphur poisoning of LaMn1â^'xMgxO3 catalysts for natural gas combustion. Applied Catalysis B: Environmental, 2001, 30, 61-73.	10.8	50
159	Sulphur poisoning of LaMn1â^'xMgxO3·yMgO catalysts for methane combustion. Applied Catalysis B: Environmental, 2001, 34, 29-41.	10.8	34
160	Catalytic combustion of propane in a membrane reactor with separate feed of reactants. IV. Transition from the kinetics- to the transport-controlled regime. Chemical Engineering Science, 2000, 55, 3979-3989.	1.9	16
161	Catalytic filters for the abatement of volatile organic compounds. Chemical Engineering Science, 2000, 55, 897-908.	1.9	43
162	Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochimica Acta, 2000, 46, 373-380.	2.6	70

#	Article	IF	CITATIONS
163	Methane combustion over low-emission catalytic foam burners. Catalysis Today, 2000, 60, 21-32.	2.2	39
164	Diesel particulate abatement via catalytic traps. Catalysis Today, 2000, 60, 33-41.	2.2	39
165	A screening study on the activation energy of vanadateâ€based catalysts for diesel soot combustion. Catalysis Letters, 2000, 69, 207-215.	1.4	36
166	Development of a Methane Premixed Catalytic Burner for Household Applications. Industrial & Engineering Chemistry Research, 2000, 39, 24-33.	1.8	23
167	Catalytic traps for diesel particulate control. Chemical Engineering Science, 1999, 54, 3035-3041.	1.9	32
168	High-temperature membrane reactors: potential and problems. Chemical Engineering Science, 1999, 54, 1997-2017.	1.9	230
169	Catalytic pre-mixed fibre burners. Chemical Engineering Science, 1999, 54, 3599-3608.	1.9	28
170	Effect of chemical composition of isomorphous metavanadates on their catalytic activity toward carbon combustion. Materials Research Bulletin, 1999, 34, 851-862.	2.7	9
171	Methane combustion on Mg-doped LaMnO3 perovskite catalysts. Applied Catalysis B: Environmental, 1999, 20, 277-288.	10.8	141
172	Development of catalysts based on pyrovanadates for diesel soot combustion. Applied Catalysis B: Environmental, 1999, 21, 233-242.	10.8	78
173	Suitability of some promising soot combustion catalysts for application in diesel exhaust treatment. Applied Catalysis B: Environmental, 1998, 18, 137-150.	10.8	62
174	Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases. Applied Thermal Engineering, 1998, 18, 1025-1035.	3.0	31
175	Potential of Mixed Halides and Vanadates as Catalysts for Soot Combustion. Industrial & Engineering Chemistry Research, 1997, 36, 2051-2058.	1.8	28
176	Transport properties of monovalent-ion-permselective membranes. Chemical Engineering Science, 1997, 52, 3019-3031.	1.9	85
177	Combustion of carbonaceous materials by CuKV based catalysts. Applied Catalysis B: Environmental, 1997, 11, 307-328.	10.8	48
178	Combustion of carbonaceous materials by CuKV based catalysts. Applied Catalysis B: Environmental, 1997, 11, 329-346.	10.8	89
179	Catalytically modified fly-ash filters for NOx reduction with NH3. Chemical Engineering Science, 1996, 51, 5289-5297.	1.9	39
180	CATALYTIC COMBUSTION OF PROPANE IN A MEMBRANE REACTOR WITH SEPARATE FEED OF REACTANTS III. ROLE OF CATALYST LOAD ON REACTOR PERFORMANCE. Chemical Engineering Communications, 1996, 147, 29-42.	1.5	8

#	Article	IF	CITATIONS
181	Catalytic combustion of propane in a membrane reactor with separate feed of reactants—l. Operation in absence of trans-membrane pressure gradients. Chemical Engineering Science, 1995, 50, 2005-2015.	1.9	17
182	Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients. Chemical Engineering Science, 1995, 50, 2833-2841.	1.9	37
183	Studies on sol-gel derived catalytic filters. Chemical Engineering Science, 1995, 50, 3385-3394.	1.9	11
184	Influence of some precursors on the physico-chemical characteristics of transition aluminas for the preparation of ceramic catalytic filters. Ceramics International, 1995, 21, 43-49.	2.3	17
185	Catalytic Ceramic Filters for Flue Gas Cleaning. 2. Catalytic Performance and Modeling Thereof. Industrial & Engineering Chemistry Research, 1995, 34, 1480-1487.	1.8	27
186	Catalytic Ceramic Filters for Flue Gas Cleaning. 1. Preparation and Characterization. Industrial & Engineering Chemistry Research, 1995, 34, 1471-1479.	1.8	46
187	High temperature ammonia stripping and recovery from process liquid wastes. Journal of Hazardous Materials, 1994, 37, 191-206.	6.5	48
188	Current hurdles to the success of high-temperature membrane reactors. Journal of Membrane Science, 1994, 95, 105-123.	4.1	111
189	Catalytic Inorganic-Membrane Reactors: Present Experience and Future Opportunities. Catalysis Reviews - Science and Engineering, 1994, 36, 305-384.	5.7	260
190	Ion transport through monovalent-anion-permselective membranes. Industrial & Engineering Chemistry Research, 1994, 33, 96-101.	1.8	40
191	A new process for HNO3 recovery from spent pickling solutions. Resources, Conservation and Recycling, 1993, 9, 141-152.	5.3	2
192	Novel application of monovalent-ion-permselective membranes to the recovery treatment of an industrial wastewater by electrodialysis. Industrial & Engineering Chemistry Research, 1993, 32, 657-662.	1.8	23
193	Mild Catalytic DPF Regeneration and Related CO Emissions in Commercial Vehicles. SAE International Journal of Commercial Vehicles, 0, 1, 338-346.	0.4	Ο
194	Pollutants Emissions During Mild Catalytic DPF Regeneration In Light-Duty Vehicles. SAE International Journal of Fuels and Lubricants, 0, 2, 78-87.	0.2	1