
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2886222/publications.pdf Version: 2024-02-01

AMD SARDY

#	Article	IF	CITATIONS
1	Symmetries in reversible programming: from symmetric rig groupoids to reversible programming languages. , 2022, 6, 1-32.		2
2	Embracing the laws of physics: Three reversible models of computation. Advances in Computers, 2022, ,	1.6	0
3	A computational interpretation of compact closed categories: reversible programming with negative and fractional types. , 2021, 5, 1-29.		4
4	Mapping Quantum Chemical Dynamics Problems to Spin-Lattice Simulators. Journal of Chemical Theory and Computation, 2021, 17, 6713-6732.	5.3	7
5	Fractional Types. Lecture Notes in Computer Science, 2020, , 169-186.	1.3	2
6	From Reversible Programs to Univalent Universes and Back. Electronic Notes in Theoretical Computer Science, 2018, 336, 5-25.	0.9	3
7	NANOPI. , 2018, , .		11
8	An extended account of contract monitoring strategies as patterns of communication. Journal of Functional Programming, 2018, 28, .	0.8	2
9	Quantum interval-valued probability: Contextuality and the Born rule. Physical Review A, 2018, 97, .	2.5	1
10	A Library of Reversible Circuit Transformations (Work in Progress). Lecture Notes in Computer Science, 2018, , 339-345.	1.3	0
11	Computing with Semirings and Weak Rig Groupoids. Lecture Notes in Computer Science, 2016, , 123-148.	1.3	9
12	Expressing contract monitors as patterns of communication. , 2015, , .		4
13	Expressing contract monitors as patterns of communication. ACM SIGPLAN Notices, 2015, 50, 387-399.	0.2	0
14	Discrete quantum theories. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 115305.	2.1	8
15	Extensible effects. ACM SIGPLAN Notices, 2014, 48, 59-70.	0.2	12
16	Extensible effects. , 2013, , .		65
17	Encoding secure information flow with restricted delegation and revocation in Haskell. , 2013, , .		1
18	Geometry of discrete quantum computing. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 185301.	2.1	13

#	Article	IF	CITATIONS
19	Isomorphic Interpreters from Logically Reversible Abstract Machines. Lecture Notes in Computer Science, 2013, , 57-71.	1.3	4
20	Information effects. , 2012, , .		17
21	Information effects. ACM SIGPLAN Notices, 2012, 47, 73-84.	0.2	13
22	Lazy evaluation and delimited control. , 2009, , .		10
23	Sequent calculi and abstract machines. ACM Transactions on Programming Languages and Systems, 2009, 31, 1-48.	2.1	16
24	A type-theoretic foundation of delimited continuations. Higher-Order and Symbolic Computation, 2009, 22, 233-273.	0.3	19
25	Lazy evaluation and delimited control. ACM SIGPLAN Notices, 2009, 44, 153-164.	0.2	2
26	The Arrow Calculus as a Quantum Programming Language. Lecture Notes in Computer Science, 2009, , 379-393.	1.3	6
27	Reasoning about General Quantum Programs over Mixed States. Lecture Notes in Computer Science, 2009, , 321-335.	1.3	4
28	Quantum Arrows in Haskell. Electronic Notes in Theoretical Computer Science, 2008, 210, 139-152.	0.9	1
29	A monadic framework for delimited continuations. Journal of Functional Programming, 2007, 17, 687-730.	0.8	55
30	An Algebra of Pure Quantum Programming. Electronic Notes in Theoretical Computer Science, 2007, 170, 23-47.	0.9	18
31	A proof-theoretic foundation of abortive continuations. Higher-Order and Symbolic Computation, 2007, 20, 403-429.	0.3	15
32	Structuring quantum effects: superoperators as arrows. Mathematical Structures in Computer Science, 2006, 16, 453-468.	0.6	27
33	Delimited dynamic binding. , 2006, , .		43
34	Delimited dynamic binding. ACM SIGPLAN Notices, 2006, 41, 26-37.	0.2	6
35	Backtracking, interleaving, and terminating monad transformers. ACM SIGPLAN Notices, 2005, 40, 192-203.	0.2	24

Backtracking, interleaving, and terminating monad transformers. , 2005, , .

60

#	Article	IF	CITATIONS
37	The essence of compiling with continuations. ACM SIGPLAN Notices, 2004, 39, 502-514.	0.2	8
38	An abstract monadic semantics for value recursion. RAIRO - Theoretical Informatics and Applications, 2004, 38, 375-400.	0.5	8
39	A type-theoretic foundation of continuations and prompts. , 2004, , .		14
40	Modeling quantum computing in Haskell. , 2003, , .		21
41	CPS in little pieces: composing partial continuations. Journal of Functional Programming, 2002, 12, 617-622.	0.8	0
42	Monadic encapsulation of effects: a revised approach (extended version). Journal of Functional Programming, 2001, 11, 591-627.	0.8	33
43	Macros as multi-stage computations. ACM SIGPLAN Notices, 2001, 36, 74-85.	0.2	10
44	From Syntactic Theories to Interpreters: Automating the Proof of Unique Decomposition. Higher-Order and Symbolic Computation, 2001, 14, 387-409.	0.3	18
45	Macros as multi-stage computations. , 2001, , .		67
46	Putting Operational Techniques to the Test: A Syntactic Theory for Behavioral Verilog. Electronic Notes in Theoretical Computer Science, 1999, 26, 34-51.	0.9	8
47	Monadic encapsulation in ML. , 1999, , .		19
48	Monadic encapsulation in ML. ACM SIGPLAN Notices, 1999, 34, 8-17.	0.2	0
49	Correctness of Monadic State: An Imperative Call-by-Need Calculus. Electronic Notes in Theoretical Computer Science, 1998, 10, 53.	0.9	0
50	Correctness of monadic state. , 1998, , .		16
51	What is a purely functional language?. Journal of Functional Programming, 1998, 8, 1-22.	0.8	19
52	A reflection on call-by-value. ACM Transactions on Programming Languages and Systems, 1997, 19, 916-941.	2.1	70
53	Monadic state. ACM SIGPLAN Notices, 1997, 32, 227-238.	0.2	0

4

#	Article	IF	CITATIONS
55	A reflection on call-by-value. ACM SIGPLAN Notices, 1996, 31, 13-24.	0.2	1
56	A reflection on call-by-value. , 1996, , .		14
57	Proving the correctness of reactive systems using sized types. , 1996, , .		209
58	ls continuation-passing useful for data flow analysis?. , 1994, , .		30
59	Is continuation-passing useful for data flow analysis?. ACM SIGPLAN Notices, 1994, 29, 1-12.	0.2	4
60	Reasoning about programs in continuation-passing style. Higher-Order and Symbolic Computation, 1993, 6, 289-360.	0.6	180
61	The essence of compiling with continuations. , 1993, , .		325
62	The essence of compiling with continuations. ACM SIGPLAN Notices, 1993, 28, 237-247.	0.2	68
63	Reasoning about programs in continuation-passing style , 1992, , .		73
64	Not by equations alone: Reasoning with extensible effects. Journal of Functional Programming, 0, 31, .	0.8	3
65	Reversible Communicating Processes. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 203, 45-59.	0.8	2