
Ming-Xiong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2885942/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated Imaging Approach with MEG and DTI to Detect Mild Traumatic Brain Injury in Military and Civilian Patients. Journal of Neurotrauma, 2009, 26, 1213-1226.	1.7	194
2	Neural representation of interval encoding and decision making. Cognitive Brain Research, 2004, 21, 193-205.	3.3	168
3	Lateralization of Auditory Sensory Gating and Neuropsychological Dysfunction in Schizophrenia. American Journal of Psychiatry, 2003, 160, 1595-1605.	4.0	145
4	Xenomelia: a new right parietal lobe syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1314-1319.	0.9	145
5	Vector-based spatial–temporal minimum L1-norm solution for MEG. NeuroImage, 2006, 31, 1025-1037.	2.1	104
6	An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage, 2012, 61, 1067-1082.	2.1	101
7	A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage, 2007, 37, 731-748.	2.1	100
8	Impairment on the hippocampal-dependent virtual Morris water task in schizophrenia. Schizophrenia Research, 2006, 87, 67-80.	1.1	87
9	A Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR Image. IEEE Transactions on Neural Networks, 2007, 18, 1424-1432.	4.8	86
10	Cognitive Abilities and 50- and 100-msec Paired-Click Processes in Schizophrenia. American Journal of Psychiatry, 2010, 167, 1264-1275.	4.0	86
11	Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. NeuroImage: Clinical, 2014, 5, 109-119.	1.4	85
12	A parietal–frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. NeuroImage, 2005, 28, 99-114.	2.1	81
13	M50 sensory gating predicts negative symptoms in schizophrenia. Schizophrenia Research, 2005, 73, 311-318.	1.1	73
14	Dual-Core Beamformer for obtaining highly correlated neuronal networks in MEG. NeuroImage, 2011, 54, 253-263.	2.1	66
15	Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Human Brain Mapping, 2004, 23, 26-39.	1.9	65
16	Cortical thickness as a contributor to abnormal oscillations in schizophrenia?. NeuroImage: Clinical, 2014, 4, 122-129.	1.4	64
17	Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD. NeuroImage: Clinical, 2014, 5, 408-419.	1.4	62
18	Sources on the anterior and posterior banks of the central sulcus identified from magnetic somatosensory evoked responses using Multi-Start Spatio-Temporal localization. Human Brain Mapping, 2000, 11, 59-76.	1.9	61

MING-XIONG HUANG

#	Article	IF	CITATIONS
19	MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. NeuroImage, 2014, 84, 585-604.	2.1	60
20	Resting-State Alpha in Autism Spectrum Disorder and Alpha Associations with Thalamic Volume. Journal of Autism and Developmental Disorders, 2015, 45, 795-804.	1.7	57
21	A Specific Test of Hippocampal Deficit in Schizophrenia Behavioral Neuroscience, 2005, 119, 863-875.	0.6	56
22	Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vision Research, 2002, 42, 3059-3074.	0.7	54
23	Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopicallyâ€mapped stimulus locations. Human Brain Mapping, 2009, 30, 1290-1309.	1.9	52
24	Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task. Brain Topography, 2010, 23, 82-104.	0.8	51
25	Abnormal White Matter Blood-Oxygen-Level–Dependent Signals in Chronic Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1254-1271.	1.7	50
26	Impaired secondary somatosensory gating in patients with schizophrenia. Psychiatry Research, 2007, 151, 189-199.	1.7	49
27	Depression of cortical activity in humans by mild hypercapnia. Human Brain Mapping, 2012, 33, 715-726.	1.9	48
28	Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge. PLoS ONE, 2019, 14, e0201212.	1.1	48
29	A non-invasive method for observing hippocampal function. NeuroReport, 2003, 14, 1957-1960.	0.6	46
30	Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling. PLoS ONE, 2010, 5, e11454.	1.1	46
31	Resting-State Magnetoencephalography Reveals Different Patterns of Aberrant Functional Connectivity in Combat-Related Mild Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 1412-1426.	1.7	44
32	Superior temporal gyrus spectral abnormalities in schizophrenia. Psychophysiology, 2008, 45, 812-824.	1.2	42
33	Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity. Frontiers in Human Neuroscience, 2013, 7, 63.	1.0	37
34	Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury. NeuroImage: Clinical, 2015, 8, 210-223.	1.4	37
35	The role of biomarkers and MEG-based imaging markers in the diagnosis of post-traumatic stress disorder and blast-induced mild traumatic brain injury. Psychoneuroendocrinology, 2016, 63, 398-409.	1.3	37
36	Evaluation of signal space separation via simulation. Medical and Biological Engineering and Computing, 2008, 46, 923-932.	1.6	35

#	Article	IF	CITATIONS
37	The Cortical Maps of Hierarchical Linguistic Structures during Speech Perception. Cerebral Cortex, 2019, 29, 3232-3240.	1.6	35
38	Temporal and frontal cortical thickness associations with M100 auditory activity and attention in healthy controls and individuals with schizophrenia. Schizophrenia Research, 2012, 140, 250-257.	1.1	34
39	Paired MEG data set source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions on Biomedical Engineering, 2000, 47, 1248-1260.	2.5	33
40	Cross-modal generality of the gating deficit. Psychophysiology, 2005, 42, 318-327.	1.2	32
41	Signal Space Separation Algorithm and Its Application on Suppressing Artifacts Caused by Vagus Nerve Stimulation for Magnetoencephalography Recordings. Journal of Clinical Neurophysiology, 2009, 26, 392-400.	0.9	32
42	Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome. Journal of Neurotrauma, 2015, 32, 1510-1521.	1.7	31
43	Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. British Journal of Psychiatry, 2016, 208, 160-167.	1.7	31
44	High-resolution MEG source imaging approach to accurately localize Broca's area in patients with brain tumor or epilepsy. Clinical Neurophysiology, 2016, 127, 2308-2316.	0.7	30
45	Neuropsychological and sensory gating deficits related to remote alcohol abuse history in schizophrenia. Journal of the International Neuropsychological Society, 2006, 12, 34-44.	1.2	26
46	Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer. NeuroImage, 2011, 56, 1918-1928.	2.1	26
47	Marked Increases in Resting-State MEG Gamma-Band Activity in Combat-Related Mild Traumatic Brain Injury. Cerebral Cortex, 2020, 30, 283-295.	1.6	24
48	A hybrid tissue segmentation approach for brain MR images. Medical and Biological Engineering and Computing, 2006, 44, 242-249.	1.6	23
49	Magnetoencephalographic Characterization of Sleep Spindles in Humans. Journal of Clinical Neurophysiology, 2000, 17, 224-231.	0.9	23
50	Magnetoencephalography in the Diagnosis of Concussion. Progress in Neurological Surgery, 2014, 28, 94-111.	1.3	22
51	A pilot treatment study for mild traumatic brain injury: Neuroimaging changes detected by MEG after low-intensity pulse-based transcranial electrical stimulation. Brain Injury, 2017, 31, 1951-1963.	0.6	21
52	Impact of TBI, PTSD, and Hearing Loss on Tinnitus Progression in a US Marine Cohort. Military Medicine, 2019, 184, 839-846.	0.4	21
53	By our bootstraps: Comparing methods for measuring auditory 40 Hz steadyâ€state neural activity. Psychophysiology, 2017, 54, 1110-1127.	1.2	20
54	Frontal and superior temporal auditory processing abnormalities in schizophrenia. NeuroImage: Clinical, 2013, 2, 695-702.	1.4	19

MING-XIONG HUANG

#	Article	IF	CITATIONS
55	Resting-State Neuronal Oscillatory Correlates of Working Memory Performance. PLoS ONE, 2013, 8, e66820.	1.1	18
56	MEG Working Memory N-Back Task Reveals Functional Deficits in Combat-Related Mild Traumatic Brain Injury. Cerebral Cortex, 2019, 29, 1953-1968.	1.6	18
57	Investigation of the normal proximal somatomotor system using magnetoencephalography. Clinical Neurophysiology, 2003, 114, 1781-1792.	0.7	15
58	Emerging Approaches to Neurocircuits in PTSD and TBI: Imaging the Interplay of Neural and Emotional Trauma. Current Topics in Behavioral Neurosciences, 2018, 38, 163-192.	0.8	15
59	ldentifying auditory cortex encoding abnormalities in schizophrenia: The utility of lowâ€frequency versus 40 Hz steadyâ€state measures. Psychophysiology, 2018, 55, e13074.	1.2	15
60	Prospective Associations Between Traumatic Brain Injury and Postdeployment Tinnitus in Active-Duty Marines. Journal of Head Trauma Rehabilitation, 2016, 31, 30-39.	1.0	14
61	Abnormal distraction and loadâ€ s pecific connectivity during working memory in cognitively normal Parkinson's disease. Human Brain Mapping, 2020, 41, 1195-1211.	1.9	14
62	Brain Amygdala Volume Increases in Veterans and Active-Duty Military Personnel With Combat-Related Posttraumatic Stress Disorder and Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2020, 35, E1-E9.	1.0	11
63	Presurgical Functional Mapping with Magnetoencephalography. Neuroimaging Clinics of North America, 2020, 30, 159-174.	0.5	11
64	Resting State Functional Connectivity MRI among Spectral MEG Current Sources in Children on the Autism Spectrum. Frontiers in Neuroscience, 2016, 10, 258.	1.4	10
65	Altered Functional Interactions of Inhibition Regions in Cognitively Normal Parkinson's Disease. Frontiers in Aging Neuroscience, 2018, 10, 331.	1.7	10
66	Resting-State Magnetoencephalography Source Imaging Pilot Study in Children with Mild Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 994-1001.	1.7	9
67	Associations and Heritability of Auditory Encoding, Gray Matter, and Attention in Schizophrenia. Schizophrenia Bulletin, 2019, 45, 859-870.	2.3	8
68	Dynamic cognitive remediation for a Traumatic Brain Injury (TBI) significantly improves attention, working memory, processing speed, and reading fluency. Restorative Neurology and Neuroscience, 2019, 37, 71-86.	0.4	8
69	Apotemnophilia - the Neurological Basis of a 'Psychological' Disorder. Nature Precedings, 2009, , .	0.1	7
70	Peripheral Nerve Magnetoneurography With Optically Pumped Magnetometers. Frontiers in Physiology, 2022, 13, 798376.	1.3	7
71	Magnetoencephalography Signal Processing, Forward Modeling, Inverse Source Imaging, and Coherence Analysis. Neuroimaging Clinics of North America, 2020, 30, 125-143.	0.5	6
72	Temperature trends and correlation between SQUID superparamagnetic relaxometry and dc-magnetization on model iron-oxide nanoparticles. Journal of Applied Physics, 2020, 127, .	1.1	6

MING-XIONG HUANG

#	Article	IF	CITATIONS
73	Detection of Chronic Blast-Related Mild Traumatic Brain Injury with Diffusion Tensor Imaging and Support Vector Machines. Diagnostics, 2022, 12, 987.	1.3	6
74	Enhanced Fast-VESTAL for Magnetoencephalography Source Imaging: From Theory to Clinical Application in Epilepsy. IEEE Transactions on Biomedical Engineering, 2021, 68, 793-806.	2.5	5
75	Restingâ€state magnetoencephalography source magnitude imaging with deepâ€learning neural network for classification of symptomatic combatâ€related mild traumatic brain injury. Human Brain Mapping, 2021, 42, 1987-2004.	1.9	5
76	Magnetoencephalography for Mild Traumatic Brain Injury and Posttraumatic Stress Disorder. Neuroimaging Clinics of North America, 2020, 30, 175-192.	0.5	4
77	Hippocampal and thalamic neuronal metabolism in a putative rat model of schizophrenia. Neural Regeneration Research, 2013, 8, 2415-23.	1.6	4
78	Primary somatosensory cortex hand representation dynamically modulated by motor output. Neurocase, 2015, 21, 103-105.	0.2	2
79	Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry. Physics in Medicine and Biology, 2017, 62, 734-757.	1.6	2
80	Magnetoencephalography Language Mapping Using Auditory Memory Retrieval and Silent Repeating Task. Journal of Clinical Neurophysiology, 2024, 41, 148-154.	0.9	1
81	Two mechanisms facilitate regional independence between brain regions based on an examination of alpha-band activity in healthy control adult males. International Journal of Psychophysiology, 2022, 178, 51-59.	0.5	1
82	A Data-Adaptive Fuzzy Rule base System for Putamen Segmentation in Brain MR Images. Intelligent Automation and Soft Computing, 2006, 12, 431-441.	1.6	0
83	Magnetoencephalography (MEG) Slow-Wave Imaging for Diagnosing Non-acute Mild Traumatic Brain Injury. Current Radiology Reports, 2015, 3, 1.	0.4	0
84	Magnetoencephalography: Elucidating Brain Function. Neuroimaging Clinics of North America, 2020, 30, xv-xvi.	0.5	0