Nicholas Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288591/publications.pdf

Version: 2024-02-01

198 papers 10,188 citations

49 h-index

41323

95 g-index

205 all docs 205
docs citations

205 times ranked 8332 citing authors

#	Article	IF	CITATIONS
1	Using Raman spectroscopy to characterize biological materials. Nature Protocols, 2016, 11, 664-687.	5.5	833
2	Raman spectroscopy for identification of epithelial cancers. Faraday Discussions, 2004, 126, 141.	1.6	597
3	Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection. Advanced Drug Delivery Reviews, 2015, 89, 121-134.	6.6	494
4	Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. Journal of Raman Spectroscopy, 2002, 33, 564-573.	1.2	427
5	Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer, 2006, 94, 1460-1464.	2.9	338
6	Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst, The, 2009, 134, 1029.	1.7	257
7	Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett's oesophagus. Journal of Pathology, 2003, 200, 602-609.	2.1	233
8	Raman Spectroscopy for Early Detection of Laryngeal Malignancy: Preliminary Results. Laryngoscope, 2000, 110, 1756-1763.	1.1	200
9	Assessment of fiberoptic near-infrared raman spectroscopy for diagnosis of bladder and prostate cancer. Urology, 2005, 65, 1126-1130.	0.5	190
10	Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst, The, 2007, 132, 899.	1.7	180
11	The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. British Journal of Cancer, 2005, 92, 2166-2170.	2.9	170
12	The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. British Journal of Cancer, 2003, 89, 106-108.	2.9	163
13	Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging – the next dimension. Chemical Science, 2011, 2, 776.	3.7	163
14	Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst, The, 2018, 143, 1735-1757.	1.7	163
15	New relationships between breast microcalcifications and cancer. British Journal of Cancer, 2010, 103, 1034-1039.	2.9	153
16	Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Optics Letters, 2018, 43, 999.	1.7	150
17	Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis. Cancer Research, 2008, 68, 4424-4430.	0.4	148
18	Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis and Photodynamic Therapy, 2013, 10, 207-219.	1.3	141

#	Article	IF	CITATIONS
19	Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chemical Society Reviews, 2016, 45, 1794-1802.	18.7	141
20	Recent advances in the development of Raman spectroscopy for deep nonâ€invasive medical diagnosis. Journal of Biophotonics, 2013, 6, 7-19.	1.1	140
21	The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU International, 2004, 93, 1232-1236.	1.3	126
22	The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies. Analytical and Bioanalytical Chemistry, 2007, 387, 1657-1668.	1.9	124
23	Prospects of Deep Raman Spectroscopy for Noninvasive Detection of Conjugated Surface Enhanced Resonance Raman Scattering Nanoparticles Buried within 25 mm of Mammalian Tissue. Analytical Chemistry, 2010, 82, 3969-3973.	3.2	121
24	Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Advanced Science, 2020, 7, 1903441.	5.6	117
25	Spectropathology for the next generation: Quo vadis?. Analyst, The, 2015, 140, 2066-2073.	1.7	106
26	Drop coating deposition Raman spectroscopy of protein mixtures. Analyst, The, 2007, 132, 544.	1.7	102
27	Endoscopic Raman spectroscopy enables objective diagnosis ofÂdysplasia in Barrett's esophagus. Gastrointestinal Endoscopy, 2014, 79, 37-45.	0.5	100
28	Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst, The, 2010, 135, 895.	1.7	97
29	Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst, The, 2009, 134, 1058.	1.7	95
30	Infrared micro-spectral imaging: distinction of tissue types in axillary lymph node histology. BMC Clinical Pathology, 2008, 8, 8.	1.8	91
31	Analysis of human tear fluid by Raman spectroscopy. Analytica Chimica Acta, 2008, 616, 177-184.	2.6	90
32	Developing fibre optic Raman probes for applications in clinical spectroscopy. Chemical Society Reviews, 2016, 45, 1919-1934.	18.7	86
33	Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. Journal of Biomedical Optics, 2007, 12, 024008.	1.4	85
34	Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews, 2021, 50, 556-568.	18.7	82
35	Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst, The, 2007, 132, 48-53.	1.7	81
36	Spatially offset Raman spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	80

#	Article	IF	CITATIONS
37	Mid-IR hyperspectral imaging for label-free histopathology and cytology. Journal of Optics (United) Tj ETQq1 1	0.784314 rgE	BT/Overlock
38	Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. Applied Spectroscopy, 2018, 72, 52-84.	1.2	75
39	Evaluation of Raman probe for oesophageal cancer diagnostics. Analyst, The, 2010, 135, 3038.	1.7	74
40	Raman spectroscopy of parathyroid tissue pathology. Lasers in Medical Science, 2006, 21, 192-197.	1.0	72
41	Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. Journal of the Royal Society Interface, 2014, 11, 20140739.	1.5	72
42	Discrimination between benign, primary and secondary malignancies in lymph nodes from the head and neck utilising Raman spectroscopy and multivariate analysis. Analyst, The, 2013, 138, 3900.	1.7	68
43	Vibrational spectroscopy for cancer diagnostics. Analytical Methods, 2014, 6, 3901.	1.3	64
44	Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy. Analyst, The, 2014, 139, 729-733.	1.7	62
45	Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: A probe of tissue micromechanics. Science Advances, 2020, 6, .	4.7	61
46	Video-rate, mid-infrared hyperspectral upconversion imaging. Optica, 2019, 6, 702.	4.8	61
47	Raman spectroscopyâ€"A new method for the intra-operative assessment of axillary lymph nodes. Analyst, The, 2010, 135, 3042.	1.7	59
48	Optical diagnostics in urology: current applications and future prospects. BJU International, 2003, 92, 400-407.	1.3	58
49	A Subcutaneous Raman Needle Probe. Applied Spectroscopy, 2013, 67, 349-354.	1.2	54
50	Photodynamic therapy using 5-aminolaevulinic acid for oesophageal adenocarcinoma associated with Barrett's metaplasia. Journal of Photochemistry and Photobiology B: Biology, 1999, 53, 75-80.	1.7	53
51	The potential for histological screening using a combination of rapid Raman mapping and principal component analysis. Journal of Biophotonics, 2009, 2, 91-103.	1.1	52
52	Optical and molecular techniques to identify tumor margins within the larynx. Head and Neck, 2010, 32, 1544-1553.	0.9	51
53	Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus. Journal of Biophotonics, 2011, 4, 685-695.	1.1	46
54	Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92, 15745-15756.	3.2	46

#	Article	IF	CITATIONS
55	Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra. Chemometrics and Intelligent Laboratory Systems, 2011, 107, 363-370.	1.8	44
56	High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features. Analyst, The, 2016, 141, 630-639.	1.7	44
57	Tracking Bisphosphonates through a 20â€mm Thick Porcine Tissue by Using Surfaceâ€Enhanced Spatially Offset Raman Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 8509-8511.	7.2	42
58	Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 218-224.	1.2	41
59	Relationships between pathology and crystal structure in breast calcifications: an in situ X-ray diffraction study in histological sections. Npj Breast Cancer, 2016, 2, 16029.	2.3	41
60	Elemental vs. phase composition of breast calcifications. Scientific Reports, 2017, 7, 136.	1.6	41
61	Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue. Analyst, The, 2010, 135, 3156.	1.7	40
62	Raman spectroscopy $\hat{a}\in$ A potential new method for the intra-operative assessment of axillary lymph nodes. Journal of the Royal College of Surgeons of Edinburgh, 2012, 10, 123-127.	0.8	39
63	The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue. Bone Reports, 2015, 3, 67-75.	0.2	39
64	The potential role for photodynamic therapy in the management of upper gastrointestinal disease. Alimentary Pharmacology and Therapeutics, 2001, 15, 311-321.	1.9	38
65	Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy. Small, 2020, 16, e1906780.	5.2	35
66	Spatially Offset Raman Spectroscopy—How Deep?. Analytical Chemistry, 2021, 93, 6755-6762.	3.2	35
67	Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids. Photodiagnosis and Photodynamic Therapy, 2005, 2, 223-233.	1.3	34
68	Assessment of Compressive Raman versus Hyperspectral Raman for Microcalcification Chemical Imaging. Analytical Chemistry, 2018, 90, 7197-7203.	3.2	34
69	Raman spectroscopy of bladder tissue in the presence of 5-aminolevulinic acid. Journal of Photochemistry and Photobiology B: Biology, 2009, 95, 170-176.	1.7	33
70	Assessment of a custom-built Raman spectroscopic probe for diagnosis of early oesophageal neoplasia. Journal of Biomedical Optics, 2012, 17, 0814211.	1.4	33
71	Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties. Analyst, The, 2015, 140, 5112-5119.	1.7	33
72	Spatially Offset and Transmission Raman Spectroscopy for Determination of Depth of Inclusion in Turbid Matrix. Analytical Chemistry, 2019, 91, 8994-9000.	3.2	33

#	Article	IF	CITATIONS
73	Optical characterization of porcine tissues from various organs in the 650–1100 nm range using time-domain diffuse spectroscopy. Biomedical Optics Express, 2020, 11, 1697.	1.5	33
74	Head & neck optical diagnostics: vision of the future of surgery. Head & Neck Oncology, 2009, 1, 25.	2.3	32
75	Prospective on using fibre mid-infrared supercontinuum laser sources for <i>in vivo</i> spectral discrimination of disease. Analyst, The, 2018, 143, 5874-5887.	1.7	32
76	Evaluation of linear discriminant analysis for automated Raman histological mapping of esophageal high-grade dysplasia. Journal of Biomedical Optics, 2010, 15, 066015.	1.4	31
77	Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells. Journal of Raman Spectroscopy, 2017, 48, 119-125.	1.2	31
78	Exploiting the diagnostic potential of biomolecular fingerprinting with vibrational spectroscopy. Faraday Discussions, 2011, 149, 279-290.	1.6	30
79	Characterisation of a fibre optic Raman probe within a hypodermic needle. Analytical and Bioanalytical Chemistry, 2015, 407, 8311-8320.	1.9	29
80	High sensitivity nonâ€invasive detection of calcifications deep inside biological tissue using Transmission Raman Spectroscopy. Journal of Biophotonics, 2018, 11, e201600260.	1.1	29
81	Optical spectroscopy for the early diagnosis of gastrointestinal malignancy. Lasers in Medical Science, 1998, 13, 3-13.	1.0	28
82	Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens. Analyst, The, 2019, 144, 6479-6496.	1.7	28
83	Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue. Journal of Biomedical Optics, 2005, 10, 044006.	1.4	27
84	Surface enhanced Raman scattering of herpes simplex virus in tear film. Photodiagnosis and Photodynamic Therapy, 2008, 5, 42-49.	1.3	27
85	Evaluation of a confocal <scp>R</scp> aman probe for pathological diagnosis during colonoscopy. Colorectal Disease, 2014, 16, 732-738.	0.7	27
86	Current trends in machine-learning methods applied to spectroscopic cancer diagnosis. TrAC - Trends in Analytical Chemistry, 2014, 59, 17-25.	5.8	27
87	Chemicoâ€mechanical imaging of Barrett's oesophagus. Journal of Biophotonics, 2016, 9, 694-700.	1.1	27
88	Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging. Analyst, The, 2015, 140, 2369-2375.	1.7	26
89	Detection of $\hat{Al^2}$ plaque-associated astrogliosis in Alzheimer's disease brain by spectroscopic imaging and immunohistochemistry. Analyst, The, 2018, 143, 850-857.	1.7	26
90	Novel Au–SiO ₂ –WO ₃ Core–Shell Composite Nanoparticles for Surfaceâ€Enhanced Raman Spectroscopy with Potential Application in Cancer Cell Imaging. Advanced Functional Materials, 2019, 29, 1903549.	7.8	26

#	Article	IF	Citations
91	ENDOSCOPIC THERAPY FOR BARRETT'S OESOPHAGUS. Gut, 2005, 54, 875-884.	6.1	25
92	Electronic nose analysis of bronchoalveolar lavage fluid. European Journal of Clinical Investigation, 2011, 41, 52-58.	1.7	25
93	Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation. Analyst, The, 2013, 138, 5052.	1.7	25
94	Calcification Microstructure Reflects Breast Tissue Microenvironment. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 333-342.	1.0	25
95	Fourier transform infrared spectroscopic studies of T-cell lymphoma, B-cell lymphoid and myeloid leukaemia cell lines. Analyst, The, 2009, 134, 763-768.	1.7	24
96	Enhanced spectral histology in the colon using high-magnification benchtop FTIR imaging. Vibrational Spectroscopy, 2017, 91, 83-91.	1.2	24
97	FTIR of touch imprint cytology: A novel tissue diagnostic technique. Journal of Photochemistry and Photobiology B: Biology, 2008, 92, 160-164.	1.7	23
98	Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications. Proceedings of SPIE, 2008, , .	0.8	22
99	Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy. Faraday Discussions, 2016, 187, 329-339.	1.6	22
100	Determination of inclusion depth in ex vivo animal tissues using surface enhanced deep Raman spectroscopy. Journal of Biophotonics, 2020, 13, e201960092.	1.1	22
101	Review: Optical Micrometer Resolution Scanning for Non-invasive Grading of Precancer in the Human Uterine Cervix. Technology in Cancer Research and Treatment, 2008, 7, 483-496.	0.8	21
102	Histological imaging of a human colon polyp sample using Raman spectroscopy and self organising maps. Vibrational Spectroscopy, 2012, 60, 43-49.	1.2	20
103	Age-Related Changes in Femoral Head Trabecular Microarchitecture. , 2018, 9, 976.		20
104	Single Cell Imaging of Nuclear Architecture Changes. Frontiers in Cell and Developmental Biology, 2019, 7, 141.	1.8	20
105	Raman Microscopy: Complement or Competitor?. Metal lons in Life Sciences, 2010, , 105-143.	1.0	19
106	Temperature Spatially Offset Raman Spectroscopy (T-SORS): Subsurface Chemically Specific Measurement of Temperature in Turbid Media Using Anti-Stokes Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2016, 88, 832-837.	3.2	19
107	Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. Nanomaterials, 2022, 12, 922.	1.9	19
108	Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe. Analyst, The, 2014, 139, 381-388.	1.7	18

#	Article	IF	Citations
109	Correlation mapping: rapid method for identification of histological features and pathological classification in mid infrared spectroscopic images of lymph nodes. Journal of Biomedical Optics, 2010, 15, 026030.	1.4	17
110	Method for Identification of Spectral Targets in Discrete Frequency Infrared Spectroscopy for Clinical Diagnostics. Applied Spectroscopy, 2015, 69, 1066-1073.	1.2	17
111	Infrared micro-spectroscopy for cyto-pathological classification of esophageal cells. Analyst, The, 2015, 140, 2215-2223.	1.7	17
112	Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy. Analyst, The, 2016, 141, 5738-5746.	1.7	17
113	Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chemical Science, 2020, 11, 8671-8685.	3.7	17
114	Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features. Radiology, 2022, 303, 54-62.	3.6	17
115	Near real-time classification of optical coherence tomography data using principal components fed linear discriminant analysis. Journal of Biomedical Optics, 2008, 13, 034002.	1.4	15
116	Subsurface Chemically Specific Measurement of pH Levels in Biological Tissues Using Combined Surface-Enhanced and Deep Raman. Analytical Chemistry, 2019, 91, 10984-10987.	3.2	15
117	Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS). Analyst, The, 2019, 144, 3552-3555.	1.7	15
118	Non-invasive depth determination of inclusion in biological tissues using spatially offset Raman spectroscopy with external calibration. Analyst, The, 2020, 145, 7623-7629.	1.7	15
119	Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications. Biomedical Optics Express, 2018, 9, 4979.	1.5	15
120	Raman spectroscopy and multivariate analysis for the non invasive diagnosis of clinically inconclusive vulval lichen sclerosus. Analyst, The, 2017, 142, 1200-1206.	1.7	14
121	Multimodal registration of optical microscopic and infrared spectroscopic images from different tissue sections: An application to colon cancer. , 2017, 68, 1-15.		13
122	Noninvasive Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Based on Sample Differential Transmittance. Analytical Chemistry, 2017, 89, 9730-9733.	3.2	13
123	Liquid Biopsies in Lung Cancer: Four Emerging Technologies and Potential Clinical Applications. Cancers, 2019, 11, 331.	1.7	13
124	Towards automated classification of clinical optical coherence tomography data of dense tissues. Lasers in Medical Science, 2009, 24, 627-638.	1.0	12
125	Assessment of robustness and transferability of classification models built for cancer diagnostics using Raman spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 897-903.	1.2	12
126	Sensitivity of Transmission Raman Spectroscopy Signals to Temperature of Biological Tissues. Scientific Reports, 2018, 8, 8379.	1.6	12

#	Article	IF	CITATIONS
127	Estimating the Reduced Scattering Coefficient of Turbid Media Using Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2021, 93, 3386-3392.	3.2	12
128	Biofluids and other techniques: general discussion. Faraday Discussions, 2016, 187, 575-601.	1.6	11
129	Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Using a Beam Enhancing Element. Applied Spectroscopy, 2017, 71, 1849-1855.	1.2	11
130	Rapid endoscopic identification and destruction of degenerating Barrett's mucosal neoplasia. Journal of the Royal College of Surgeons of Edinburgh, 2011, 9, 119-123.	0.8	10
131	Automated cytological detection of Barrett's neoplasia with infrared spectroscopy. Journal of Gastroenterology, 2018, 53, 227-235.	2.3	10
132	Discrimination of skin cancer cells using Fourier transform infrared spectroscopy. Computers in Biology and Medicine, 2018, 100, 50-61.	3.9	10
133	Characterization of colorectal mucus using infrared spectroscopy: a potential target for bowel cancer screening and diagnosis. Laboratory Investigation, 2020, 100, 1102-1110.	1.7	10
134	Raman point mapping of tear ferning patterns. , 2008, , .		9
135	Towards the intra-operative use of Raman spectroscopy in breast cancer—overcoming the effects of theatre lighting. Lasers in Medical Science, 2016, 31, 1143-1149.	1.0	9
136	Self-absorption corrected non-invasive transmission Raman spectroscopy (of biological tissue). Analyst, The, 2021, 146, 1260-1267.	1.7	9
137	Single Cell Label-Free Probing of Chromatin Dynamics During B Lymphocyte Maturation. Frontiers in Cell and Developmental Biology, 2021, 9, 646616.	1.8	9
138	A time-course Raman spectroscopic analysis of spontaneous in vitro microcalcifications in a breast cancer cell line. Laboratory Investigation, 2021, 101, 1267-1280.	1.7	9
139	Progress in the detection of neoplastic progress and cancer by Raman spectroscopy. , 2000, , .		8
140	FTIR microspectroscopy of stained cells and tissues. Application in cancer diagnosis. Spectroscopy, 2010, 24, 73-78.	0.8	8
141	Characterisation of signal enhancements achieved when utilizing a photon diode in deep Raman spectroscopy of tissue. Biomedical Optics Express, 2016, 7, 2130.	1.5	8
142	Noninvasive simultaneous monitoring of pH and depth using surfaceâ€enhanced deep Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 1078-1082.	1.2	8
143	Utilization of Raman spectroscopy to identify breast cancer from the water content in surgical samples containing blue dye. Translational Biophotonics, 2021, 3, e202000023.	1.4	8
144	Semi-Parametric Estimation in the Compositional Modeling of Multicomponent Systems from Raman Spectroscopic Data. Applied Spectroscopy, 2006, 60, 877-883.	1.2	7

#	Article	IF	CITATIONS
145	Role of Fourier transform infrared spectroscopy (FTIR) in the diagnosis of parathyroid pathology. Photodiagnosis and Photodynamic Therapy, 2007, 4, 124-129.	1.3	7
146	Vibrational Spectroscopy: The Solution for Immediate Medical Diagnosis. Materials Today: Proceedings, 2015, 2, 890-893.	0.9	7
147	Enhanced deep detection of Raman scattered light by wavefront shaping. Optics Express, 2018, 26, 33565.	1.7	7
148	Identification of cancer associated molecular changes in histologically benign vulval disease found in association with vulval squamous cell carcinoma using Fourier transform infrared spectroscopy. Analytical Methods, 2016, 8, 8452-8460.	1.3	6
149	Clinical Spectroscopy: general discussion. Faraday Discussions, 2016, 187, 429-460.	1.6	6
150	Towards the mid-infrared optical biopsy. Proceedings of SPIE, 2016, , .	0.8	6
151	Translation of an esophagus histopathological <scp>FTâ€IR</scp> imaging model to a fast quantum cascade laser modality. Journal of Biophotonics, 2020, 13, e202000122.	1.1	6
152	Noninvasive Detection of Differential Water Content Inside Biological Samples Using Deep Raman Spectroscopy. Analytical Chemistry, 2020, 92, 9449-9453.	3.2	6
153	Autotuning of A PID Controller for an Active Vibration Suppression Device for the Treatment of Essential Tremor., 2006,, 855.		5
154	Locating microcalcifications in breast histopathology sections using micro CT and XRF mapping. Analytical Methods, 2014, 6, 3962-3966.	1.3	5
155	Spectral Pathology: general discussion. Faraday Discussions, 2016, 187, 155-186.	1.6	5
156	Brillouin microspectroscopy data of tissue-mimicking gelatin hydrogels. Data in Brief, 2020, 29, 105267.	0.5	5
157	Multiphoton imaging and Raman spectroscopy of the bovine vertebral endplate. Analyst, The, 2021, 146, 4242-4253.	1.7	5
158	Raman Spectroscopy for Early Cancer Detection, Diagnosis and Elucidation of Disease-Specific Biochemical Changes. Biological and Medical Physics Series, 2010, , 315-346.	0.3	5
159	A multi-modal exploration of heterogeneous physico–chemical properties of DCIS breast microcalcifications. Analyst, The, 2022, 147, 1641-1654.	1.7	5
160	Standardizing Dosimetry in Esophageal PDT: An Argument for Use of Centering Devices and Removal of Misleading Units. Technology in Cancer Research and Treatment, 2003, 2, 333-338.	0.8	4
161	Real-time disease detection using spectroscopic diagnosis. Biomedical Spectroscopy and Imaging, 2014, 3, 197-202.	1.2	4
162	Single cell analysis/data handling: general discussion. Faraday Discussions, 2016, 187, 299-327.	1.6	4

#	Article	IF	Citations
163	Identification of GI cancers utilising rapid mid-infrared spectral imaging. Proceedings of SPIE, 2016, , .	0.8	4
164	Developing Raman spectroscopy as a diagnostic tool for labelâ€free antigen detection. Journal of Biophotonics, 2018, 11, e201700028.	1.1	4
165	Predicting the Refractive Index of Tissue Models Using Light Scattering Spectroscopy. Applied Spectroscopy, 2021, 75, 574-580.	1.2	4
166	Urological applications of Raman spectroscopy for improved malignant diagnostics., 2004, 5321, 57.		3
167	Novel Raman signal recovery from deeply buried tissue components. Proceedings of SPIE, 2008, , .	0.8	3
168	Multivariate classification of fourier transform infrared hyperspectral images of skin cancer cells. , 2016, , .		3
169	Performance of mid infrared spectroscopy in skin cancer cell type identification. , 2017, , .		3
170	Rapid Raman microscopic imaging for potential histological screening., 2008,,.		3
171	An experimental and numerical modelling investigation of the optical properties of Intralipid using deep Raman spectroscopy. Analyst, The, 2021, 146, 7601-7610.	1.7	3
172	Raman spectroscopic biochemical mapping of tissues. , 2006, , .		2
173	Improvements in Alzheimer's disease diagnosis using principle components analysis (PCA) in combination with Raman spectroscopy. , 2007, , .		2
174	Current practice in management of high-grade dysplasia in Barrett's oesophagus: The real problem. Photodiagnosis and Photodynamic Therapy, 2008, 5, 38-41.	1.3	2
175	Raman spectroscopy as a tool for the identification and differentiation of neoplasias contained within lymph nodes of the head and neck. Head & Neck Oncology, 2010, 2, .	2.3	2
176	Raman spectroscopy as a tool for the identification and differentiation of neoplasias contained within lymph nodes of the head and neck. Proceedings of SPIE, 2010, , .	0.8	2
177	Optimizing penetration depth, contrast, and resolution in 3D dermatologic OCT. , 2010, , .		2
178	Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies. , 2016, , .		2
179	Endoscopic screening and surveillance for Barrett's esophagus–clinical implications. MedGenMed: Medscape General Medicine, 2006, 8, 88.	0.2	2
180	<title>Optical measurements on human synovial fluid and its relevance to pathology</title> ., 1996,,.		1

#	Article	IF	CITATIONS
181	Raman spectroscopy for the diagnosis of dysplasia in columnar and squamous epithelium., 2000,,.		1
182	<title>Near-infrared Raman spectroscopy for detection and classification of gastrointestinal disease</title> ., 2002,,.		1
183	Surface-enhanced Raman scattering of the tear film., 2003, , .		1
184	Raman spectral mapping for the illumination of biochemical changes associated with malignancy in the oesophagus. , $2003, \ldots$		1
185	Endoscopic photodynamic therapy for oesophageal disease. Photodiagnosis and Photodynamic Therapy, 2006, 3, 102-105.	1.3	1
186	Vibrational spectroscopic analysis of breast calcifications and surrounding tissue., 2006, 6093, 221.		1
187	Screening cervical and oesophageal tissues using optical coherence tomography. Proceedings of SPIE, 2011, , .	0.8	1
188	Stained and infrared image registration as first step for cancer detection. , 2014, , .		1
189	Evaluation of a multi-fibre needle Raman probe for tissue analysis. , 2016, , .		1
190	A two-step framework for the registration of HE stained and FTIR images. , 2016, , .		1
191	Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection. , $2018, , .$		1
192	Infrared Spectroscopic Analysis in the Differentiation of Epithelial Misplacement From Adenocarcinoma in Sigmoid Colonic Adenomatous Polyps. BMC Clinical Pathology, 2022, 15, 2632010X2210889.	0.7	1
193	<title>Optimum procedure for construction of spectral classification algorithms for medical diagnosis</title> ., 2002, 4614, 152.		O
194	Axillary lymph node analysis using Raman spectroscopy. , 2004, , .		0
195	Raman spectroscopic tools for medical applications , 2016, , .		O
196	Spectroscopic tools for the elucidation of disease specific changes in breast cancer., 2017,,.		0
197	Characterisation of a novel transmission Raman spectroscopy platform for non-invasive detection of breast micro-calcifications. , $2018, \ldots$		0
198	Spatially Offset Raman Spectroscopy for estimating the depth of inclusion in diffusely scattering samples. , 2022, , .		0