Geert De Schutter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of hydrated magnesium carbonate grown <i>in situ</i> on the property of MgO-activated reactive SiO ₂ mortars. Journal of Sustainable Cement-Based Materials, 2022, 11, 286-296.	1.7	3
2	Adsorption and dispersion capability of polycarboxylate-based superplasticizers: a review. Journal of Sustainable Cement-Based Materials, 2022, 11, 319-344.	1.7	9
3	Mechanical and microstructural properties of 3D printable concrete in the context of the twin-pipe pumping strategy. Cement and Concrete Composites, 2022, 125, 104324.	4.6	21
4	A 3D reactive transport model for simulation of the chemical reaction process of ASR at microscale. Cement and Concrete Research, 2022, 151, 106640.	4.6	6
5	3D printable concrete with natural and recycled coarse aggregates: Rheological, mechanical and shrinkage behaviour. Cement and Concrete Composites, 2022, 125, 104311.	4.6	52
6	Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cement and Concrete Composites, 2022, 125, 104303.	4.6	38
7	Magneto-rheology control in 3D concrete printing: A rheological attempt. Materials Letters, 2022, 309, 131374.	1.3	12
8	Influence of substrate surface roughness and moisture content on tensile adhesion performance of 3D printable concrete. Cement and Concrete Composites, 2022, 126, 104350.	4.6	20
9	A mix design methodology of slag and fly ash-based alkali-activated paste. Cement and Concrete Composites, 2022, 126, 104368.	4.6	55
10	The durability of concrete subject to mechanical load coupled with freeze–thaw cycles: a review. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	1.9	14
11	A Novel Rejuvenating Method for Structural and Performance Recovery of Aged SBS-Modified Bitumen. ACS Sustainable Chemistry and Engineering, 2022, 10, 1565-1577.	3.2	28
12	Evaluation of rheology and strength development of alkali-activated slag with different silicates sources. Cement and Concrete Composites, 2022, 128, 104415.	4.6	17
13	Pumping of concrete: Understanding a common placement method with lots of challenges. Cement and Concrete Research, 2022, 154, 106720.	4.6	35
14	Identification of multi-scale homogeneity of blended cement concrete: macro performance, micro and meso structure. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10293-10304.	2.0	4
15	An overview on the effect of pumping on concrete properties. Cement and Concrete Composites, 2022, 129, 104501.	4.6	12
16	Performance criteria, environmental impact and cost assessment for 3D printable concrete mixtures. Resources, Conservation and Recycling, 2022, 181, 106255.	5.3	19
17	Rheology of alkali-activated slag pastes: New insight from microstructural investigations by cryo-SEM. Cement and Concrete Research, 2022, 157, 106806.	4.6	18
18	Insights in the chemical fundamentals of ASR and the role of calcium in the early stage based on a 3D reactive transport model. Cement and Concrete Research, 2022, 157, 106778.	4.6	6

#	Article	IF	CITATIONS
19	Rheology and structural build-up of sodium silicate- and sodium hydroxide-activated GGBFS mixtures. Cement and Concrete Composites, 2022, 131, 104570.	4.6	25
20	Production of lightweight aggregates from bauxite tailings for the internal curing of high-strength mortars. Construction and Building Materials, 2022, 341, 127800.	3.2	21
21	Influence of aluminum sulfate on mobility and adhesion of hydroxyethyl methyl cellulose in cement-based materials for tunnel linings. Cement and Concrete Composites, 2022, 131, 104594.	4.6	10
22	AC impedance spectroscopy of cement - based materials: measurement and interpretation. Cement and Concrete Composites, 2022, 131, 104591.	4.6	30
23	The Production of a Topology-Optimized 3D-Printed Concrete Bridge. RILEM Bookseries, 2022, , 37-42.	0.2	4
24	Salt Scaling Resistance of 3D Printed Concrete. RILEM Bookseries, 2022, , 188-193.	0.2	3
25	Influence of the Print Process on the Durability of Printed Cementitious Materials. RILEM Bookseries, 2022, , 194-199.	0.2	1
26	Early structural build-up, setting behavior, reaction kinetics and microstructure of sodium silicate-activated slag mixtures with different retarder chemicals. Cement and Concrete Research, 2022, 159, 106872.	4.6	19
27	Hydration re-initiation of borated CSA systems with a two-stage mixing process: An application in extrusion-based concrete 3D printing. Cement and Concrete Research, 2022, 159, 106870.	4.6	19
28	Degradation of concrete in marine environment under coupled chloride and sulfate attack: A numerical and experimental study. Case Studies in Construction Materials, 2022, 17, e01218.	0.8	3
29	Shape stability of 3D printable concrete with river and manufactured sand characterized by squeeze flow. Cement and Concrete Composites, 2022, 133, 104674.	4.6	4
30	Rheological properties of concrete with manufactured sand: A multi-level prediction. Cement and Concrete Composites, 2022, 133, 104647.	4.6	9
31	A review on seismic behavior of ultra-high performance concrete members. Advances in Structural Engineering, 2021, 24, 1054-1069.	1.2	21
32	Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research, 2021, 139, 106258.	4.6	95
33	Quantitative evaluation of interfacial transition zone of sustainable concrete with recycled and steel slag as aggregate. Structural Concrete, 2021, 22, 926-938.	1.5	15
34	Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cement and Concrete Composites, 2021, 115, 103855.	4.6	175
35	Alteration mechanisms of carbonated steel slag product under hydrochloric acid attack. Journal of Sustainable Cement-Based Materials, 2021, 10, 46-64.	1.7	2
36	Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete. Construction and Building Materials, 2021, 275, 122136.	3.2	45

#	Article	IF	CITATIONS
37	Internal curing of blended cement pastes with ultraâ€low waterâ€toâ€cement ratio: Absorption/desorption kinetics of superabsorbent polymer. Journal of the American Ceramic Society, 2021, 104, 3603-3618.	1.9	7
38	3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation. Materials, 2021, 14, 2908.	1.3	7
39	Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: A review. Journal of Cleaner Production, 2021, 295, 126435.	4.6	75
40	Stiffening control of cement-based materials using accelerators in inline mixing processes: Possibilities and challenges. Cement and Concrete Composites, 2021, 119, 103972.	4.6	74
41	Structural evolution of cement paste with nano-Fe3O4 under magnetic field - Effect of concentration and particle size of nano-Fe3O4. Cement and Concrete Composites, 2021, 120, 104036.	4.6	32
42	Effect of Ca(OH)2 Addition on the Engineering Properties of Sodium Sulfate Activated Slag. Materials, 2021, 14, 4266.	1.3	23
43	Plastic viscosity of cement mortar with manufactured sand as influenced by geometric features and particle size. Cement and Concrete Composites, 2021, 122, 104163.	4.6	30
44	Prediction of Compressive Strength of Concrete with Manufactured Sand by Ensemble Classification and Regression Tree Method. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	19
45	Rheological behavior of cement paste with nano-Fe3O4 under magnetic field: Magneto-rheological responses and conceptual calculations. Cement and Concrete Composites, 2021, 120, 104035.	4.6	33
46	The improvement of freezing–thawing resistance of concrete by cellulose/polyvinyl alcohol hydrogel. Construction and Building Materials, 2021, 291, 123274.	3.2	40
47	Possibilities of fly ash as responsive additive in magneto-rheology control of cementitious materials. Construction and Building Materials, 2021, 296, 123656.	3.2	19
48	Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers. Materials, 2021, 14, 4474.	1.3	13
49	Enhancing thixotropy and structural build-up of alkali-activated slag/fly ash pastes with nano clay. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	25
50	Numerical Reliability Study Based on Rheological Input for Bingham Paste Pumping Using a Finite Volume Approach in OpenFOAM. Materials, 2021, 14, 5011.	1.3	7
51	Thixotropic structural build-up of cement-based materials: A state-of-the-art review. Cement and Concrete Composites, 2021, 122, 104152.	4.6	76
52	Experimental study on concurrent factors influencing the ITZ effect on mass transport in concrete. Cement and Concrete Composites, 2021, 123, 104215.	4.6	50
53	Experimental investigation for modeling the hardening of thermosetting polymers during curing. Polymer Testing, 2021, 102, 107310.	2.3	12
54	Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals. Additive Manufacturing, 2021, 47, 102327.	1.7	5

#	Article	IF	CITATIONS
55	Determination of free chloride in seawater cement paste with low water-binder ratio. Cement and Concrete Composites, 2021, 124, 104217.	4.6	18
56	Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cement and Concrete Composites, 2021, 124, 104244.	4.6	44
57	Flow behavior of cementitious-like suspension with nano-Fe3O4 particles under external magnetic field. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	7
58	Active stiffening control by magnetically induced blocking in confined flow of fly ash pastes. Construction and Building Materials, 2021, 313, 125485.	3.2	5
59	Investigation on influential factors on chloride concentration index of cement-based materials by pore solution expression method. Construction and Building Materials, 2020, 231, 117135.	3.2	9
60	AC impedance spectroscopy characteristics of chloride-exposed cement pastes. Construction and Building Materials, 2020, 233, 117267.	3.2	8
61	Changes of pore structure and chloride content in cement pastes after pore solution expression. Cement and Concrete Composites, 2020, 106, 103465.	4.6	21
62	Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC. Cement and Concrete Research, 2020, 138, 106253.	4.6	80
63	Evolution of elastic behavior of alite paste at early hydration stages. Journal of the American Ceramic Society, 2020, 103, 6490-6504.	1.9	17
64	Studying the effect of alkali dosage on microstructure development of alkali-activated slag pastes by electrical impedance spectroscopy (EIS). Construction and Building Materials, 2020, 261, 119982.	3.2	23
65	Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration. Materials, 2020, 13, 5164.	1.3	12
66	Influence of water to binder ratio on the rheology and structural Build-up of Alkali-Activated Slag/Fly ash mixtures. Construction and Building Materials, 2020, 264, 120253.	3.2	71
67	Role of ITZ in the Degradation Process of Blended Cement Concrete under Magnesium Sulfate Attack. Journal of Materials in Civil Engineering, 2020, 32, 04020235.	1.3	4
68	The role of ink-bottle pores in freeze-thaw damage of oolithic limestone. Construction and Building Materials, 2020, 246, 118515.	3.2	22
69	Synthesis of a New Polycarboxylate at Room Temperature and Its Influence on the Properties of Cement Pastes with Different Supplementary Cementitious Materials. Advances in Civil Engineering, 2020, 2020, 1-10.	0.4	1
70	Progresses in Synthesis of Polycarboxylate Superplasticizer. Advances in Civil Engineering, 2020, 2020, 1-14.	0.4	7
71	Flexural Performance of Basalt Textile-Reinforced Concrete with Pretension and Short Fibers. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	11
72	Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete. RILEM Bookseries, 2020, , 333-341.	0.2	10

5

#	Article	IF	CITATIONS
73	Insights in thixotropic concrete pumping by a Poiseuille flow extension. Applied Rheology, 2020, 30, 77-101.	3.5	10
74	A study on the chloride diffusion behavior of blended cement concrete in relation to aggregate and ITZ. Construction and Building Materials, 2019, 223, 1063-1073.	3.2	29
75	Structural build-up of cementitious paste with nano-Fe3O4 under time-varying magnetic fields. Cement and Concrete Research, 2019, 124, 105857.	4.6	51
76	A feasible method for measuring the buildability of fresh 3D printing mortar. Construction and Building Materials, 2019, 227, 116600.	3.2	93
77	Characterization of cogeneration generated Napier grass ash and its potential use as SCMs. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	7
78	Effects of applied voltage on chloride binding and microstructure of cement pastes subjected to chloride solutions. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	3
79	Rheological behavior of Portland clinker-calcium sulphoaluminate clinker-anhydrite ternary blend. Cement and Concrete Composites, 2019, 104, 103403.	4.6	54
80	Time-dependent rheological behavior of cementitious paste under continuous shear mixing. Construction and Building Materials, 2019, 226, 591-600.	3.2	50
81	Microstructural Characterization of 3D Printed Cementitious Materials. Materials, 2019, 12, 2993.	1.3	105
82	Autogenous and drying shrinkage of alkaliâ€activated slag mortars. Journal of the American Ceramic Society, 2019, 102, 4963-4975.	1.9	60
83	Effects of rotational shearing on rheological behavior of fresh mortar with short glass fiber. Construction and Building Materials, 2019, 203, 314-321.	3.2	29
84	Uniaxial compressive strength measurements of limestone plugs and cores: a size comparison and X-ray CT study. Bulletin of Engineering Geology and the Environment, 2019, 78, 5301-5310.	1.6	20
85	Influence of nano-clay on rheology, fresh properties, heat of hydration and strength of cement-based mortars. Construction and Building Materials, 2019, 222, 73-85.	3.2	72
86	Structure-property relationships for polycarboxylate ether superplasticizers by means of RAFT polymerization. Journal of Colloid and Interface Science, 2019, 553, 788-797.	5.0	36
87	Rheological characterization of the viscoelastic solid-like properties of fresh cement pastes with nanoclay addition. Theoretical and Applied Fracture Mechanics, 2019, 103, 102262.	2.1	45
88	A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 2019, 242, 440-449.	3.8	162
89	Utilization of miscanthus combustion ash as internal curing agent in cement-based materials: Effect on autogenous shrinkage. Construction and Building Materials, 2019, 207, 585-591.	3.2	13
90	Full-Field Settlement Measurement at Fresh Cementitious Material by Digital Image Correlation. Journal of Advanced Concrete Technology, 2019, 17, 168-176.	0.8	6

#	Article	IF	CITATIONS
91	A review on microstructural characterization of cement-based materials by AC impedance spectroscopy. Cement and Concrete Composites, 2019, 100, 1-14.	4.6	84
92	Multi-level diffusion model for manufactured sand mortar considering particle shape and limestone powder effects. Construction and Building Materials, 2019, 207, 218-227.	3.2	33
93	Supported ITZ Modification Efficiencies via Surface Coating Nanoparticles on Aggregate and its Influence on Properties. Materials, 2019, 12, 3541.	1.3	8
94	Investigation on the potential utilization of zeolite as an internal curing agent for autogenous shrinkage mitigation and the effect of modification. Construction and Building Materials, 2019, 198, 669-676.	3.2	34
95	Insights and issues on the correlation between diffusion and microstructure of saturated cement pastes. Cement and Concrete Composites, 2019, 96, 106-117.	4.6	21
96	Mixture design of concrete using simplex centroid design method. Cement and Concrete Composites, 2018, 89, 76-88.	4.6	85
97	Effective diffusivity of cement pastes from virtual microstructures: Role of gel porosity and capillary pore percolation. Construction and Building Materials, 2018, 165, 833-845.	3.2	44
98	Effect of polycarboxylate ether superplasticizer (PCE) on dynamic yield stress, thixotropy and flocculation state of fresh cement pastes in consideration of the Critical Micelle Concentration (CMC). Cement and Concrete Research, 2018, 107, 75-84.	4.6	125
99	A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching. Construction and Building Materials, 2018, 166, 158-170.	3.2	32
100	Synthesis and characteristics of pectiniform polyurethaneâ€modified polycarboxylate at room temperature. Journal of Applied Polymer Science, 2018, 135, 45873.	1.3	3
101	Influence of interface conditions on the response of transversely isotropic multi-layered medium by impact load. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 485-493.	1.5	6
102	Mix design factors of self-consolidating cement paste affecting the magnitude of variations in rheological properties induced by the addition time of PCE-superplasticizer. Construction and Building Materials, 2018, 159, 269-276.	3.2	11
103	Active control of properties of concrete: a (p)review. Materials and Structures/Materiaux Et Constructions, 2018, 51, 123.	1.3	49
104	Damage evolution of blended cement concrete under sodium sulfate attack in relation to ITZ volume content. Construction and Building Materials, 2018, 190, 452-465.	3.2	20
105	Application of Digital Image Correlation to Cement Paste. Proceedings (mdpi), 2018, 2, 446.	0.2	3
106	Effects of Strain Rate and Temperature on the Flexural Behavior of Basalt and Glass Textile–Reinforced Concrete. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	17
107	Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE). Cement and Concrete Research, 2018, 111, 15-22.	4.6	148
108	Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cement and Concrete Research, 2018, 113, 55-64.	4.6	153

#	Article	IF	CITATIONS
109	Different Effects of NSF and PCE Superplasticizer on Adsorption, Dynamic Yield Stress and Thixotropy of Cement Pastes. Materials, 2018, 11, 695.	1.3	36
110	Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cement and Concrete Research, 2018, 112, 25-36.	4.6	553
111	Statistical Damage Constitutive Model for Rocks Considering Residual Strength. International Journal of Geomechanics, 2017, 17, .	1.3	58
112	Effect of the mix design on the robustness of fresh self-compacting concrete. Cement and Concrete Composites, 2017, 82, 190-201.	4.6	40
113	On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cement and Concrete Research, 2017, 99, 183-189.	4.6	174
114	Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Construction and Building Materials, 2017, 149, 406-415.	3.2	82
115	Differential analysis of AC impedance spectroscopy of cement-based materials considering CPE behavior. Construction and Building Materials, 2017, 143, 179-188.	3.2	25
116	Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	86
117	Effect of constituents on rheological properties of fresh concrete-A review. Cement and Concrete Composites, 2017, 83, 146-159.	4.6	314
118	Composition design and performance of alkali-activated cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	104
119	Generalised fracture mechanics approach to the interfacial failure analysis of a bonded steel-concrete joint. Frattura Ed Integrita Strutturale, 2017, 11, 147-160.	0.5	8
120	Assessment of Structural Feature and Ionic Diffusivity of ITZ in Blended Cementitious Composites. Journal of Advanced Concrete Technology, 2016, 14, 344-353.	0.8	6
121	Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products. Materials, 2016, 9, 9.	1.3	14
122	Studies on the Alkali–Silica Reaction Rim in a Simplified Calcium–Alkali–Silicate System. Materials, 2016, 9, 670.	1.3	5
123	Elastic Modulus of the Alkali-Silica Reaction Rim in a Simplified Calcium-Alkali-Silicate System Determined by Nano-Indentation. Materials, 2016, 9, 787.	1.3	8
124	Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport. Construction and Building Materials, 2016, 114, 333-351.	3.2	79
125	Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching. Construction and Building Materials, 2016, 115, 179-192.	3.2	57
126	The role of Ca(OH)2 in sulfate salt weathering of ordinary concrete. Construction and Building Materials, 2016, 123, 127-134.	3.2	27

#	Article	IF	CITATIONS
127	Calculation of chloride ion concentration in expressed pore solution of cement-based materials exposed to a chloride salt solution. Cement and Concrete Research, 2016, 89, 168-176.	4.6	24
128	Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches. Cement and Concrete Research, 2016, 90, 52-72.	4.6	123
129	Which parameters, other than the water content, influence the robustness of cement paste with SCC consistency?. Construction and Building Materials, 2016, 124, 95-103.	3.2	30
130	Polymorph transformation of tricalcium silicate doped with heavy metal. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 883-890.	0.4	3
131	Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete. Advances in Cement Research, 2016, 28, 555-566.	0.7	31
132	Uniaxial Compression Behavior of Ultra-High Performance Concrete with Hybrid Steel Fiber. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	103
133	Effects of crack and ITZ and aggregate on carbonation penetration based on 3D micro X-ray CT microstructure evolution. Construction and Building Materials, 2016, 128, 256-271.	3.2	49
134	Error evaluation and correction of stray impedance during measurement and interpretation of AC impedance of cement-based materials. Cement and Concrete Composites, 2016, 72, 190-200.	4.6	17
135	Stabilization of Cr(III) wastes by C3S and C3S hydrated matrix: comparison of two incorporation methods. Materials and Structures/Materiaux Et Constructions, 2016, 49, 3109-3118.	1.3	4
136	Changes in rheology of self-consolidating concrete induced by pumping. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4657-4677.	1.3	76
137	The damage of calcium sulfoaluminate cement paste partially immersed in MgSO4 solution. Materials and Structures/Materiaux Et Constructions, 2016, 49, 719-727.	1.3	15
138	Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	96
139	Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties. Cement and Concrete Research, 2016, 79, 243-256.	4.6	183
140	Investigation of the changes in microstructure and transport properties of leached cement pastes accounting for mix composition. Cement and Concrete Research, 2016, 79, 217-234.	4.6	96
141	Experimental and numerical determination of the chloride penetration in cracked mortar specimens. European Journal of Environmental and Civil Engineering, 2016, 20, 231-249.	1.0	12
142	Comparative investigation on nanomechanical properties of hardened cement paste. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1591-1604.	1.3	42
143	Influence of the Interfacial Transition Zone and Interconnection on Chloride Migration of Portland Cement Mortar. Journal of Advanced Concrete Technology, 2015, 13, 169-177.	0.8	24
144	Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO 2 pressure conditions. Construction and Building Materials, 2015, 82, 376-390.	3.2	105

#	Article	IF	CITATIONS
145	Effect of nano-zinc oxide on ultraviolet aging properties of bitumen with 60/80 penetration grade. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3249-3257.	1.3	56
146	Structural Behaviour of Composite Members with Recycled Aggregate Concrete — An Overview. Advances in Structural Engineering, 2015, 18, 919-938.	1.2	51
147	A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Materials and Structures/Materiaux Et Constructions, 2015, 48, 621-628.	1.3	84
148	Plasticising mechanism of sodium gluconate combined with PCE. Advances in Cement Research, 2015, 27, 163-174.	0.7	16
149	Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures/Materiaux Et Constructions, 2015, 48, 743-751.	1.3	59
150	Effects of Deicing Salts on the Scaling Resistance of Concrete. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	43
151	A review on mixture design methods for self-compacting concrete. Construction and Building Materials, 2015, 84, 387-398.	3.2	226
152	Performance Enhancement of Recycled Concrete Aggregates through Carbonation. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	237
153	Modification of existing shape factor models for self-compacting concrete strength by means of Bayesian updating techniques. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1163-1176.	1.3	3
154	Influence of self-compacting concrete fresh properties on bond to reinforcement. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1875-1886.	1.3	4
155	Managing Zn wastes in C3S: comparison of two incorporation methods. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2659-2669.	1.3	8
156	Does concrete suffer sulfate salt weathering?. Construction and Building Materials, 2014, 66, 692-701.	3.2	61
157	Behaviour of fatigue loaded self-compacting concrete compared to vibrated concrete. Structural Concrete, 2014, 15, 575-589.	1.5	11
158	Influence of the composition of powder-type SCC on conversion factors for compressive strength. Magazine of Concrete Research, 2014, 66, 295-304.	0.9	4
159	Vibrated Concrete vs. Self-Compacting Concrete: Comparison of Fracture Mechanics Properties. Key Engineering Materials, 2014, 601, 199-202.	0.4	2
160	Research Progresses in Magnesium Phosphate Cement–Based Materials. Journal of Materials in Civil Engineering, 2014, 26, .	1.3	99
161	Influence of Cracks on Chloride Penetration in Mortar Specimens Subjected to Cyclic Treatment. Key Engineering Materials, 2014, 601, 223-226.	0.4	1
162	The ITZ microstructure, thickness and porosity in blended cementitious composite: Effects of curing age, water to binder ratio and aggregate content. Composites Part B: Engineering, 2014, 60, 1-13.	5.9	153

#	Article	IF	CITATIONS
163	Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete. Cement and Concrete Composites, 2014, 48, 83-90.	4.6	40
164	Influence of heavy metals on the early hydration of calcium sulfoaluminate. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1153-1162.	2.0	18
165	Earlyâ€age behaviour of precast concrete immersed tunnel based on degree of hydration concept. Structural Concrete, 2014, 15, 66-80.	1.5	16
166	Influence of particle size on the early hydration of slag particle activated by Ca(OH)2 solution. Construction and Building Materials, 2014, 52, 488-493.	3.2	18
167	Numerical simulation of formwork pressure while pumping self-compacting concrete bottom-up. Engineering Structures, 2014, 70, 218-233.	2.6	23
168	Fractal and multifractal analysis on pore structure in cement paste. Construction and Building Materials, 2014, 69, 253-261.	3.2	74
169	Effect of calcium aluminate cement variety on the hydration of portland cement in blended system. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 751-756.	0.4	15
170	Quantitative determination of composition of quaternary cementitious materials. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 314-320.	0.4	0
171	Modulus of elasticity and tensile strength of self-compacting concrete: Survey of experimental data and structural design codes. Cement and Concrete Composites, 2014, 54, 53-61.	4.6	24
172	Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests. Construction and Building Materials, 2014, 57, 1-8.	3.2	43
173	A versatile pore-scale multicomponent reactive transport approach based on lattice Boltzmann method: Application to portlandite dissolution. Physics and Chemistry of the Earth, 2014, 70-71, 127-137.	1.2	33
174	Shape factors of self-compacting concrete specimens subjected to uniaxial loading. Cement and Concrete Composites, 2014, 54, 62-69.	4.6	5
175	Determination of water permeability of cementitious materials using a controlled constant flow method. Construction and Building Materials, 2013, 47, 1488-1496.	3.2	69
176	Chloride binding isotherm from migration and diffusion tests. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 548-556.	0.4	10
177	Simulation of the microstructure formation in hardening self-compacting cement paste containing limestone powder as filler via computer-based model. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1861-1879.	1.3	5
178	Parameters influencing pressure during pumping of self-compacting concrete. Materials and Structures/Materiaux Et Constructions, 2013, 46, 533-555.	1.3	73
179	Non-steady state chloride diffusion in concrete with different crack densities. Materials and Structures/Materiaux Et Constructions, 2013, 46, 123-133.	1.3	33
180	Settlement Calculation of Composite Foundation Reinforced with Stone Columns. International Journal of Geomechanics, 2013, 13, 248-256.	1.3	45

#	Article	IF	CITATIONS
181	The effect of MgSO4 on thaumasite formation. Cement and Concrete Composites, 2013, 35, 102-108.	4.6	35
182	A microscopic study on ternary blended cement based composites. Construction and Building Materials, 2013, 46, 28-38.	3.2	13
183	Structural behaviour of powder-type self-compacting concrete: Bond performance and shear capacity. Engineering Structures, 2013, 48, 121-132.	2.6	48
184	Micro- and meso-scale pore structure in mortar in relation to aggregate content. Cement and Concrete Research, 2013, 52, 149-160.	4.6	61
185	Observations on dedolomitization of carbonate concrete aggregates, implications for ACR and expansion. Cement and Concrete Research, 2013, 54, 151-160.	4.6	30
186	Characterization of ITZ in ternary blended cementitious composites: Experiment and simulation. Construction and Building Materials, 2013, 41, 742-750.	3.2	73
187	Porosity characterization of ITZ in cementitious composites: Concentric expansion and overflow criterion. Construction and Building Materials, 2013, 38, 1051-1057.	3.2	90
188	Non-steady state chloride migration and binding in cracked self-compacting concrete. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 921-926.	0.4	4
189	Quantitative determination of fly ash in fresh cement mortars and concretes. Journal of Sustainable Cement-Based Materials, 2013, 2, 58-66.	1.7	6
190	A review on testing methods for autogenous shrinkage measurement of cement-based materials. Journal of Sustainable Cement-Based Materials, 2013, 2, 161-171.	1.7	10
191	Concrete in Engineered Barriers for Radioactive Waste Disposal Facilities: Phenomenological Study and Assessment of Long Term Performance. , 2013, , .		4
192	Experimental Study of the Influence of the Initial Notch Length in Cubical Concrete Wedge-Splitting Test Specimens. Key Engineering Materials, 2012, 525-526, 209-212.	0.4	3
193	Timeâ€dependent analysis during construction of concrete tube for tower highâ€rise building. Structural Concrete, 2012, 13, 236-247.	1.5	9
194	Factors affecting kinetics of CO ₂ curing of concrete. Journal of Sustainable Cement-Based Materials, 2012, 1, 24-33.	1.7	49
195	Introduction to the Journal of Sustainable Cement-based Materials. Journal of Sustainable Cement-Based Materials, 2012, 1, 1-1.	1.7	0
196	Experimental Investigation of the Influence of the Bond Conditions on the Shear Bond Strength between Steel and Self-Compacting Concrete Using Push-Out Tests. Key Engineering Materials, 2012, 525-526, 205-208.	0.4	2
197	Experimental study on alinite ecocement clinker preparation from municipal solid waste incineration fly ash. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1145-1153.	1.3	13
198	Stress-strain behaviour of self-compacting concretes containing limestone fillers. Structural Concrete, 2012, 13, 95-101.	1.5	19

#	Article	IF	CITATIONS
199	Chemical sulfate attack performance of partially exposed cement and cement+fly ash paste. Construction and Building Materials, 2012, 28, 230-237.	3.2	49
200	Preparation of Sulphoaluminate Cement-Based Material from Municipal Solid Waste Incineration (MSWI) Fly Ash. Advanced Science Letters, 2012, 5, 232-234.	0.2	3
201	Numerical Model for Chloride Penetration into Saturated Concrete. Journal of Materials in Civil Engineering, 2011, 23, 305-311.	1.3	34
202	Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar. Applied Clay Science, 2011, 53, 704-708.	2.6	118
203	Monitoring the early-age hydration of self-compacting concrete using ultrasonic p-wave transmission and isothermal calorimetry. Materials and Structures/Materiaux Et Constructions, 2011, 44, 1537-1558.	1.3	28
204	Micro-analysis of "salt weathering―on cement paste. Cement and Concrete Composites, 2011, 33, 179-191.	4.6	28
205	Effect of shale addition on properties of sintered coal fly ash. Construction and Building Materials, 2011, 25, 617-622.	3.2	15
206	Closure of the concrete supercontainer in hot cell under thermal load. Nuclear Engineering and Design, 2011, 241, 1352-1359.	0.8	9
207	Chloride Binding of Self-Compacting Concrete with Different Crack Depths under Electric Migration Test. Applied Mechanics and Materials, 2011, 105-107, 957-960.	0.2	0
208	Influence of Crack Depth on Chloride Transport of Cracked Self-Compacting Concrete under Non-Steady State Migration Test. Advanced Materials Research, 2011, 328-330, 1331-1334.	0.3	0
209	Monitoring the effect of admixtures on early-age concrete behaviour by ultrasonic, calorimetric, strength and rheometer measurements. Magazine of Concrete Research, 2011, 63, 707-721.	0.9	14
210	Bond behaviour of reinforcing bars in self-compacting concrete: experimental determination by using beam tests. Materials and Structures/Materiaux Et Constructions, 2010, 43, 53-62.	1.3	81
211	Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, 2010, 40, 908-913.	4.6	95
212	Micro-analysis of the role of interfacial transition zone in "salt weathering―on concrete. Construction and Building Materials, 2010, 24, 2052-2059.	3.2	36
213	Bond Behaviour and Shear Capacity of Self-Compacting Concrete. , 2010, , 343-353.		16
214	Similarities and Differences of Pumping Conventional and Self-Compacting Concrete. , 2010, , 153-162.		3
215	Corrosion of Glasses and Expansion Mechanism of Concrete Containing Waste Glasses as Aggregates. Journal of Materials in Civil Engineering, 2009, 21, 529-534.	1.3	56
216	Effect of glass powder on chloride ion transport and alkali-aggregate reaction expansion of lightweight aggregate concrete. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 312-317.	0.4	34

#	Article	IF	CITATIONS
217	Early age behaviour of concrete supercontainers for radioactive waste disposal. Nuclear Engineering and Design, 2009, 239, 23-35.	0.8	35
218	Why is fresh self-compacting concrete shear thickening?. Cement and Concrete Research, 2009, 39, 510-523.	4.6	194
219	Chloride binding of cement-based materials subjected to external chloride environment – A review. Construction and Building Materials, 2009, 23, 1-13.	3.2	586
220	Influence of cracks and crack width on penetration depth of chlorides in concrete. European Journal of Environmental and Civil Engineering, 2009, 13, 561-572.	1.0	23
221	Fresh self compacting concrete, a shear thickening material. Cement and Concrete Research, 2008, 38, 920-929.	4.6	167
222	Effect of hydroxyl ions on chloride penetration depth measurement using the colorimetric method. Cement and Concrete Research, 2008, 38, 1177-1180.	4.6	28
223	Influence of corrosion inhibitors on concrete transport properties. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1571-1579.	1.3	17
224	Influence of Thixotropy on Pressures Required during Pumping of Concrete. AIP Conference Proceedings, 2008, , .	0.3	7
225	Extension of the Poiseuille Formula for Shear-thickening Materials and Application to Self-compacting Concrete. Applied Rheology, 2008, 18, 62705-1-62705-11.	3.5	16
226	High Performance Concrete. , 2008, , 19-90.		0
227	Evaluation of Time Independent Rheological Models Applicable to Fresh Self-Compacting Concrete. Applied Rheology, 2007, 17, 56244-1-56244-10.	3.5	57
228	Analytical Hydration Model for Filler Rich Binders in Self-compacting Concrete. Journal of Advanced Concrete Technology, 2006, 4, 259-266.	0.8	11
229	Cement hydration in the presence of high filler contents. Cement and Concrete Research, 2005, 35, 2290-2299.	4.6	200
230	Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete. Cement and Concrete Composites, 2004, 26, 437-443.	4.6	59
231	Pozzolanic reaction in the presence of chemical activators. Cement and Concrete Research, 2000, 30, 607-613.	4.6	201
232	Pozzolanic reaction in the presence of chemical activators. Cement and Concrete Research, 2000, 30, 51-58.	4.6	182
232 233	Pozzolanic reaction in the presence of chemical activators. Cement and Concrete Research, 2000, 30, 51-58. Hydration and temperature development of concrete made with blast-furnace slag cement. Cement and Concrete Research, 1999, 29, 143-149.	4.6	182

#	Article	IF	CITATIONS
235	Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes. Cement and Concrete Research, 1994, 24, 1485-1491.	4.6	59
236	Acceleration of strength gain of lime-pozzolan cements by thermal activation. Cement and Concrete Research, 1993, 23, 824-832.	4.6	69
237	Influence of Steel Fibre Reinforcement on the Shear Resistance and Crack Pattern Formation of Self-Compacting Concrete Beams. Key Engineering Materials, 0, 452-453, 669-672.	0.4	2
238	Failure Conditions from Push Out Tests of a Steel-Concrete Joint: Fracture Mechanics Approach. Key Engineering Materials, 0, 488-489, 710-713.	0.4	1
239	Failure Conditions from Push-Out Tests of a Steel-Concrete Joint: Experimental Results. Key Engineering Materials, 0, 488-489, 714-717.	0.4	1
240	The Influence of the Epoxy Interlayer on the Assessment of Failure Conditions of Push-Out Test Specimens. Key Engineering Materials, 0, 525-526, 61-64.	0.4	0
241	Fracture Toughness and Cracking Behaviour of SCC Compared to VC. Key Engineering Materials, 0, 577-578, 205-208.	0.4	0
242	Comparative Study on the Fatigue Behaviour of SCC and VC. Key Engineering Materials, 0, 627, 333-336.	0.4	3
243	Impact of Air Entrainment on the Microstructure and Mechanical Performance of High Performance Mortar. Key Engineering Materials, 0, 629-630, 358-365.	0.4	0
244	Effect of Limestone Fillers on Ca-Leaching and Carbonation of Cement Pastes. Key Engineering Materials, 0, 711, 269-276.	0.4	4
245	Pumping of Fresh Concrete: Insights and Challenges. RILEM Technical Letters, 0, 1, 76-80.	0.0	71
246	Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials. RILEM Technical Letters, 0, 4, 33-38.	0.0	47