List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2885292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma―and precursorâ€assisted biomimetic process. Journal of Periodontal Research, 2022, 57, 205-218.	2.7	5
2	Different micro/nano-scale patterns of surface materials influence osteoclastogenesis and actin structure. Nano Research, 2022, 15, 4201-4211.	10.4	8
3	Ultrasonic irrigation of periodontal pocket with surface pre-reacted glass-ionomer (S-PRG) nanofiller dispersion improves periodontal parameters in beagle dogs. Journal of Oral Biosciences, 2022, 64, 222-228.	2.2	1
4	Biological modification of tooth surface by laser-based apatite coating techniques. Journal of Oral Biosciences, 2022, 64, 217-221.	2.2	4
5	Osteoclast formation from mouse bone marrow cells on micro/nano-scale patterned surfaces. Journal of Oral Biosciences, 2022, 64, 237-244.	2.2	1
6	Evaluation of antibacterial and cytocompatible properties of multiple-ion releasing zinc-fluoride glass nanoparticles. Dental Materials Journal, 2021, 40, 157-164.	1.8	4
7	Antibacterial coating of tooth surface with ion-releasing pre-reacted glass-ionomer (S-PRG) nanofillers. Heliyon, 2021, 7, e06147.	3.2	9
8	Antibacterial and Antibiofilm Photodynamic Activities of Lysozyme-Au Nanoclusters/Rose Bengal Conjugates. ACS Omega, 2021, 6, 9279-9290.	3.5	19
9	Bone Tissue Regeneration by Collagen Scaffolds with Different Calcium Phosphate Coatings: Amorphous Calcium Phosphate and Low-Crystalline Apatite. Materials, 2021, 14, 5860.	2.9	6
10	Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101647.	2.6	22
11	Comparative biological assessments of endodontic root canal sealer containing surface pre-reacted glass-ionomer (S-PRG) filler or silica filler. Dental Materials Journal, 2020, 39, 287-294.	1.8	17
12	Laser-Induced Forward Transfer with Optical Stamp of a Protein-Immobilized Calcium Phosphate Film Prepared by Biomimetic Process to a Human Dentin. Applied Sciences (Switzerland), 2020, 10, 7984.	2.5	9
13	Bone forming ability of recombinant human collagen peptide granules applied with βâ€ŧricalcium phosphate fine particles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3033-3044.	3.4	8
14	Technique for simple apatite coating on a dental resin composite with light-curing through a micro-rough apatite layer. Materials Science and Engineering C, 2020, 116, 111146.	7.3	4
15	In situ precipitation of amorphous calcium phosphate nanoparticles within 3D porous collagen sponges for bone tissue engineering. Materials Science and Engineering C, 2020, 116, 111194.	7.3	14
16	Antibacterial tooth surface created by laser-assisted pseudo-biomineralization in a supersaturated solution. Materials Science and Engineering C, 2020, 116, 111170.	7.3	11
17	Suppression of root caries progression by application of Nanoseal [®] : A single-blind randomized clinical trial. Dental Materials Journal, 2020, 39, 444-448.	1.8	6
18	Laser-assisted biomineralization on human dentin for tooth surface functionalization. Materials Science and Engineering C, 2019, 105, 110061.	7.3	10

#	Article	IF	CITATIONS
19	Bioactive micropatterning of apatite immobilizing cell adhesion protein by laser-induced forward transfer with a shock absorber. Optical Materials Express, 2019, 9, 2807.	3.0	12
20	Bovine serum albumin-capped gold nanoclusters conjugating with methylene blue for efficient 1O2 generation via energy transfer. Journal of Colloid and Interface Science, 2018, 510, 221-227.	9.4	32
21	Laser-assisted wet coating of calcium phosphate for surface-functionalization of PEEK. PLoS ONE, 2018, 13, e0206524.	2.5	27
22	Aggregation/Self-Assembly-Induced Approach for Efficient AuAg Bimetallic Nanocluster-Based Photosensitizers. Journal of Physical Chemistry C, 2018, 122, 12494-12501.	3.1	41
23	Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog. International Journal of Nanomedicine, 2018, Volume 13, 2365-2376.	6.7	38
24	Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants. Beilstein Journal of Nanotechnology, 2018, 9, 1735-1754.	2.8	20
25	Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization. Acta Biomaterialia, 2018, 79, 148-157.	8.3	26
26	Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process. Heliyon, 2018, 4, e00734.	3.2	9
27	Antibacterial Photocurable Acrylic Resin Coating Using a Conjugate between Silver Nanoclusters and Alkyl Quaternary Ammonium. ACS Applied Nano Materials, 2018, 1, 4809-4818.	5.0	17
28	In Vitro and in Vivo Analysis of Mineralized Collagen-Based Sponges Prepared by a Plasma- and Precursor-Assisted Biomimetic Process. ACS Applied Materials & Interfaces, 2017, 9, 22185-22194.	8.0	21
29	Periodontal tissue repair after sealing of the gap in vertical root fracture. Odontology / the Society of the Nippon Dental University, 2017, 105, 202-207.	1.9	3
30	Dose effects of beta-tricalcium phosphate nanoparticles on biocompatibility and bone conductive ability of three-dimensional collagen scaffolds. Dental Materials Journal, 2017, 36, 573-583.	1.8	28
31	Antimicrobial photodynamic activity and cytocompatibility of Au ₂₅ (Capt) ₁₈ clusters photoexcited by blue LED light irradiation. International Journal of Nanomedicine, 2017, Volume 12, 2703-2716.	6.7	28
32	Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class Il Furcation Defects in Dog. Open Dentistry Journal, 2016, 10, 347-359.	0.5	39
33	Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. International Journal of Nanomedicine, 2016, 11, 2265.	6.7	63
34	Periodontal tissue engineering by nano betaâ€tricalcium phosphate scaffold and fibroblast growth factorâ€2 in oneâ€wall infrabony defects of dogs. Journal of Periodontal Research, 2016, 51, 758-767.	2.7	51
35	Influence of enamel matrix derivative on healing of root surfaces after bonding treatment and intentional replantation of vertically fractured roots. Dental Traumatology, 2016, 32, 397-401.	2.0	12
36	Physicochemical fabrication of antibacterial calcium phosphate submicrospheres with dispersed silver nanoparticles via coprecipitation and photoreduction under laser irradiation. Acta Biomaterialia, 2016, 46, 299-307.	8.3	25

#	Article	IF	CITATIONS
37	Effect of Protein Adsorption on Alignment of Human Gingival Fibroblasts on Grooved Composite Resin. E-Journal of Surface Science and Nanotechnology, 2016, 14, 225-230.	0.4	1
38	Preparation of Chitosan-Gelatin Based Sponge Cross-Linked with GlcNAc for Bone Tissue Engineering. Journal of Chitin and Chitosan Science, 2016, 4, 1-8.	0.3	10
39	Application of graphene oxide nanosheets for periodontal treatment. Journal of Japanese Society of Periodontology, 2016, 58, 65-71.	0.1	Ο
40	Combination of Root Surface Modification with BMP-2 and Collagen Hydrogel Scaffold Implantation for Periodontal Healing in Beagle Dogs. Open Dentistry Journal, 2015, 9, 52-59.	0.5	27
41	Comparison of Fracture Sites and Post Lengths inÂLongitudinal Root Fractures. Journal of Endodontics, 2015, 41, 159-163.	3.1	23
42	Friction behavior of network-structured CNT coating on pure titanium plate. Applied Surface Science, 2015, 357, 721-727.	6.1	38
43	Bone augmentation using a highly porous <scp>PLGA</scp> /βâ€ <scp>TCP</scp> scaffold containing fibroblast growth factorâ€2. Journal of Periodontal Research, 2015, 50, 265-273.	2.7	32
44	Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. International Journal of Nanomedicine, 2014, 9, 3363.	6.7	67
45	Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Japanese Journal of Applied Physics, 2014, 53, 06JD04.	1.5	59
46	Osteoconductivity and Biodegradability of Collagen Scaffold Coated with Nano- <i>β</i> -TCP and Fibroblast Growth Factor 2. Journal of Nanomaterials, 2013, 2013, 1-11.	2.7	33
47	Application of collagen hydrogel/sponge scaffold facilitates periodontal wound healing in class II furcation defects in beagle dogs. Journal of Periodontal Research, 2012, 47, 626-634.	2.7	44
48	Healing of experimental apical periodontitis after apicoectomy using different sealing materials on the resected root end. Dental Materials Journal, 2011, 30, 485-492.	1.8	24
49	Root surface conditioning with bone morphogenetic protein-2 facilitates cementum-like tissue deposition in beagle dogs. Journal of Periodontal Research, 2010, 45, 658-663.	2.7	19
50	Bone Perforation and Placement of Collagen Sponge Facilitate Bone Augmentation. Journal of Periodontology, 2009, 80, 505-511.	3.4	17
51	Effect of BMP-2 application to root dentin surface on periodontal regeneration in 1-wall infrabony defects. Journal of Japanese Society of Periodontology, 2007, 49, 296-304.	0.1	0
52	Periodontal regeneration by BMP-2 solution and collagen hydrogel application to root dentin surface Journal of Japanese Society of Periodontology, 2006, 48, 255-266.	0.1	6
53	Dentin resorption and cementum-like tissue formation by bone morphogenetic protein application. Journal of Periodontal Research, 2006, 41, 311-315.	2.7	31
54	Suppression of cementum-like tissue formation on BMP-2-applied dentin surface by bisphosphonate. Journal of Japanese Society of Periodontology, 2006, 48, 285-296.	0.1	1

#	Article	IF	CITATIONS
55	Effect of Different Dentin Conditionings on Hard Tissue Formation and Dentin Resorption by rhBMP-2 Application to the Dentin Surface. Journal of Japanese Society of Periodontology, 2005, 47, 269-279.	0.1	5
56	Periodontal Regeneration by BMP-2 Application to Root Dentin Surface. Journal of Japanese Society of Periodontology, 2004, 46, 278-287.	0.1	7
57	Hard tissue formation on dentin surfaces applied with recombinant human bone morphogenetic protein-2 in the connective tissue of the palate. Journal of Periodontal Research, 2002, 37, 204-209.	2.7	19
58	Effect of rhBMP-2 Applied Dentin on Alkaline Phosphatase Activity and Mineralized Nodule Formation in Gingival Fibroblasts Journal of Japanese Society of Periodontology, 2000, 42, 247-254.	0.1	10